<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>PLAN D'ETUDES ET REGLEMENT DU CONTROLE DES ETUDES</td>
<td>II</td>
</tr>
<tr>
<td>PRESENTATION SCHEMATIQUE DU PLAN D'ETUDES</td>
<td>VIII - XVII</td>
</tr>
<tr>
<td>PRESENTATION GRAPHIQUE DU 7e et 8e SEMESTRE</td>
<td>XVIII</td>
</tr>
<tr>
<td>TABLE DES MATIERES PAR ENSEIGNANTS</td>
<td>DXX - XX</td>
</tr>
<tr>
<td>TABLE DES MATIERES SELON LE PLAN D'ETUDES</td>
<td>XXI - XXII</td>
</tr>
<tr>
<td>1er semestre</td>
<td>1</td>
</tr>
<tr>
<td>2e semestre</td>
<td>12</td>
</tr>
<tr>
<td>3e semestre</td>
<td>23</td>
</tr>
<tr>
<td>4e semestre</td>
<td>35</td>
</tr>
<tr>
<td>5e semestre</td>
<td>47</td>
</tr>
<tr>
<td>6e semestre</td>
<td>66</td>
</tr>
<tr>
<td>7e semestre</td>
<td>85</td>
</tr>
<tr>
<td>8e semestre</td>
<td>106</td>
</tr>
<tr>
<td>Répétition en mathématiques</td>
<td>122</td>
</tr>
</tbody>
</table>
INTRODUCTION

Cette formation est axée sur le génie rural, offrant au futur ingénieur de solides connaissances sur les aménagements techniques et fonciers de l'espace rural et sa gestion. En complément, deux orientations collatérales sont prévues : l'une en mensuration et l'autre en environnement (c.f. fig. ci-après).

La première de ces orientations (mensuration) a pour but l'acquisition de la formation théorique permettant l'accès direct à l'examen fédéral du brevet d'ingénieur-géomètre. La seconde (environnement) donne à l'ingénieur du génie rural les bases théoriques et pratiques nécessaires à la connaissance et à la maîtrise de l'évolution de cet espace.

Cette formation apporte ainsi au futur ingénieur les concepts et les outils pour la gestion à court, moyen et long terme d'un capital vital, limité et fragile, le territoire-sol.

Les premiers étudiants qui auront suivi avec succès ce nouveau programme recevront leur diplôme à fin janvier 1992. Ils seront alors en possession du titre d'ingénieur du génie rural portant mention de l'orientation choisie (mensuration ou environnement).

Pour tous renseignements, prière de contacter :

Secrétariat du département de génie rural et géomètre
1015 Lausanne
Bureau GR A2 365 - Bâtiment Génie rural, 2e étage
Mme A. Schaub
Tél. (021) 693 27 71

Chef du département
Prof. A. Musy
Institut de Génie rural
GR-Ecublens
1015 Lausanne

Président de la commission d'enseignement
Prof. A. Miserez
Institut des Mensurations
GR-Ecublens
1015 Lausanne

Le Département de Génie rural & géomètre
STRUCTURE DU PLAN D'ÉTUDES

Sciences de base
1030 h

Sciences appliquées
600 h

Environnement
200 h

Mensuration
200 h

Environnement
600 h

Génie rural
460 h

Construction
290 h

Mensuration
600 h

Non technique
200 h

Diplôme d'ingénieur du génie rural

Mention "Environnement"

Mention "Mensuration"
Plan d’études

de la Section de Génie rural et Géomètre

arrêté par le CEPF le 11 mai 1989 en vertu de l’article 7, 3e alinéa
de l’ordonnance sur le CEPF du 16 novembre 1983

valable seulement
pour l’année académique 1989/90
GÉNIE RURAL ET GÉOMÈTRE

<table>
<thead>
<tr>
<th>Matière</th>
<th>Les noms sont indiqués sous réserve de modification</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sciences de base:</td>
<td></td>
</tr>
<tr>
<td>Analyse I, II ou</td>
<td></td>
</tr>
<tr>
<td>Analyse I, II (cours en allemand)</td>
<td></td>
</tr>
<tr>
<td>Analyse III</td>
<td></td>
</tr>
<tr>
<td>Hygiène</td>
<td></td>
</tr>
<tr>
<td>Analyse numérique</td>
<td></td>
</tr>
<tr>
<td>Algèbre linéaire I, II</td>
<td></td>
</tr>
<tr>
<td>Géométrie I, II</td>
<td></td>
</tr>
<tr>
<td>Probabilité et statistique I, II</td>
<td></td>
</tr>
<tr>
<td>Programmation I, II</td>
<td></td>
</tr>
<tr>
<td>Mécanique générale I, II</td>
<td></td>
</tr>
<tr>
<td>Physique générale I, II</td>
<td></td>
</tr>
<tr>
<td>TP d'Physique générale</td>
<td></td>
</tr>
<tr>
<td>Chimie appliquée</td>
<td></td>
</tr>
<tr>
<td>Biologie générale</td>
<td></td>
</tr>
<tr>
<td>Infographie et dessin technique</td>
<td></td>
</tr>
<tr>
<td>Sciences appliquées:</td>
<td></td>
</tr>
<tr>
<td>Géologie I, II</td>
<td></td>
</tr>
<tr>
<td>Hydrologie I, II</td>
<td></td>
</tr>
<tr>
<td>Hydrométrie I, II</td>
<td></td>
</tr>
<tr>
<td>Hydrologie III</td>
<td></td>
</tr>
<tr>
<td>Physique du sol</td>
<td></td>
</tr>
<tr>
<td>Hydrologie agricole</td>
<td></td>
</tr>
<tr>
<td>Pédologie I, II</td>
<td></td>
</tr>
<tr>
<td>Agronomie générale I, II</td>
<td></td>
</tr>
<tr>
<td>Génie rural et aménagement:</td>
<td></td>
</tr>
<tr>
<td>Remaniement parcellaire I, II</td>
<td></td>
</tr>
<tr>
<td>Aménagement du territoire, II</td>
<td></td>
</tr>
<tr>
<td>Routes et chemins</td>
<td></td>
</tr>
<tr>
<td>Equipements ruraux</td>
<td></td>
</tr>
<tr>
<td>Irrigation</td>
<td></td>
</tr>
<tr>
<td>Aménagements ruraux</td>
<td></td>
</tr>
<tr>
<td>Sanités rurales</td>
<td></td>
</tr>
<tr>
<td>Travail de génie rural</td>
<td></td>
</tr>
<tr>
<td>Construction:</td>
<td></td>
</tr>
<tr>
<td>Mécanique des constructions I, II</td>
<td></td>
</tr>
<tr>
<td>Mécanique des sols I, II</td>
<td></td>
</tr>
<tr>
<td>Matériaux de construction I, II</td>
<td></td>
</tr>
<tr>
<td>Construction I, II, III</td>
<td></td>
</tr>
<tr>
<td>Divers:</td>
<td></td>
</tr>
<tr>
<td>Instruments de travail</td>
<td></td>
</tr>
<tr>
<td>Formation de complémentaire I</td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td></td>
</tr>
<tr>
<td>Formation de complémentaire II</td>
<td></td>
</tr>
<tr>
<td>Organisation des travaux</td>
<td></td>
</tr>
<tr>
<td>Synthèse d'information géogr. I, II</td>
<td></td>
</tr>
<tr>
<td>Drain I, II</td>
<td></td>
</tr>
<tr>
<td>HTE: Économie rurale I</td>
<td></td>
</tr>
<tr>
<td>HTE: Sociologie rurale</td>
<td></td>
</tr>
<tr>
<td>Mathématiques (inédite)</td>
<td></td>
</tr>
<tr>
<td>Campagnes de terrain:</td>
<td></td>
</tr>
<tr>
<td>Conseillers d'études:</td>
<td></td>
</tr>
<tr>
<td>Professeur L.-Y. Maystre</td>
<td></td>
</tr>
<tr>
<td>Chiffre de département:</td>
<td></td>
</tr>
<tr>
<td>Professeur A. Mayser</td>
<td></td>
</tr>
<tr>
<td>Coordonnateur HTE:</td>
<td></td>
</tr>
<tr>
<td>Professeur L.-Y. Maystre</td>
<td></td>
</tr>
<tr>
<td>Campagne de topographie I</td>
<td></td>
</tr>
<tr>
<td>Campagne de topographie II</td>
<td></td>
</tr>
<tr>
<td>Campagne de génie rural</td>
<td></td>
</tr>
</tbody>
</table>

| Totaux par semaine | 17 | 9 | 5 | 17 | 12 | 2 | 19 | 8 | 4 | 14 | 7 | 13 | 8 | 7 | 2 | 13 | 3 | 1 | 15 | 2485 |
|---------------------|----|---|---|----|----|---|----|---|---|----|---|----|---|---|---|---|---|---|-----|
| | 465 | 290 | 466 | 240 | 285 | 330 | 330 | 290 | 120 | 440 | 180 | 144 | 132 | 108 | 96 | 84 | 72 | 60 | 48 | 36 |

a = cours
* = exercices
p = branches pratiques
t = campagnes de terrain
I = cours facultatif
<table>
<thead>
<tr>
<th>SEMESTRE</th>
<th>Matière</th>
<th>Enseignants</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matière</td>
<td>Enseignants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td></td>
</tr>
<tr>
<td>MI (I, II)</td>
<td>Hunkeler</td>
<td>DGRG</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>MI (I, II)</td>
<td>Pürringer</td>
<td>DGRG</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>MI (I, II)</td>
<td>Terradellas</td>
<td>DGRG</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>MI (I, II)</td>
<td>Mayestre</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Topographie I & IV</td>
<td>Howald</td>
<td>DGRG</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Théorie des erreurs I</td>
<td>Howald</td>
<td>DGRG</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Photo-interprétation</td>
<td>Köbi</td>
<td>DGRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>MI (I, II)</td>
<td></td>
</tr>
<tr>
<td>Spécialisation</td>
<td></td>
</tr>
<tr>
<td>Qualité des eaux et Environnement I, II, III</td>
<td>Terradellas</td>
<td>DGRG</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Approvisionnement en eau potable</td>
<td>Mayestre</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Traitement des déchets I, II</td>
<td>Mayestre</td>
<td>DGRG</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Génie sanitaire I, II</td>
<td>Mayestre</td>
<td>DGRG</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Travaux de génie de l'environnement</td>
<td>Mayestre</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Construction des ouvrages -</td>
<td></td>
</tr>
<tr>
<td>Génie sanitaire</td>
<td>Mayestre</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Génie microbiologique</td>
<td>Pürringer</td>
<td>DGRG</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Valorisation biologique des déchets I, II</td>
<td>Pürringer</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Gestion et conservation des sols</td>
<td>Vödy</td>
<td>DGRG</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Gestion du milieu naturel</td>
<td>Vödy</td>
<td>DGRG</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Génie sanitaire IV</td>
<td>Mayestre</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Spécialisation</td>
<td></td>
</tr>
<tr>
<td>Photogrammétrie I, II</td>
<td>Köbi</td>
<td>DGRG</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Théorie des erreurs II</td>
<td>Dupraz</td>
<td>DGRG</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Bases de données</td>
<td>Speck</td>
<td>DI</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Systèmes d'information du territoire I, II, IV</td>
<td>Mayestre J.-P.</td>
<td>DGRG</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systèmes d'information du territoire III</td>
<td>Köbi</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Cadastrale numérique</td>
<td>Köbi</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Menusuration cadastrale</td>
<td>Mayestre A.</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Géodésie I, II</td>
<td>Mayestre A.</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Topométrie appliquée I, II</td>
<td>Mayestre A.</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Travaux de menusuration</td>
<td>Mayestre A.</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Étudiants de menusuration</td>
<td>vacat/Köbi/Mayestre A</td>
<td>DGRG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Droit III, IV</td>
<td>vacat</td>
<td>UHD</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

En 3e et 4e année l'étudiant suit les cours du tronc commun et l'une des deux spécialisations.

Les textes ci-dessus sont des descriptions des cours et formations dans le domaine de l'ingénierie rurale et de la géométrie. Chaque cours est identifié par ses unités, son enseignant et son nombre d'heures. Les spécialisations mentionnées incluent la gestion de l'eau, le traitement des déchets, le génie sanitaire, la géodésie et la photogrammétrie. Les cours sont divisés en différentes sections, telles que le tronc commun et les spécialisations.
V
RÈGLEMENT D'APPLICATION DU CONTRÔLE DES ÉTUDES
DU DÉPARTEMENT DE GÉNIE RURAL ET GÉOMÈTRE
(SECTION DE GÉNIE RURAL ET GÉOMÈTRE)

Sessions d'exams Printemps 1990 Été 1990 Automne 1990

Le Conseil des Ecoles,
vu l'article 33 de l'ordonnance du contrôle des études du 27 1990, décide

Article premier
Le règlement suivant est applicable à la Section de Génie rural et Géomètre.

Article 2 - Examen propédeutique I
Branches théoriques coefficient
1. Analyse I, II (écrit) 1
2. Analyse I, II (oral) 1
3. Algèbre linéaire I, II (écrit) 1
4. Géométrie I, II (écrit) 1
5. Géologie I, II (oral) 1
6. Mécanique générale I, II (écrit) 1
7. Chimie appliquée (écrit) 1

Branches pratiques
8. Infographie et Dessin technique (hiver) 1
9. Programmation I, II (hiver + été) 1
10. Milieu naturel I, II (hiver + été) 1
11. Topographie, Campagne (hiver + été) 1

Conditions de réussite:
moyenne des branches 1 à 7 ≥ 6,0 et
moyenne des branches 8 ≥ 11 ≥ 6,0.

Article 3 - Examen propédeutique II
Branches théoriques coefficient
1. Analyse III et Analyse numérique (écrit) 1
2. Physique générale I, II (écrit, oral) 1
3. Topographie à IV et Théorie des erreurs I (oral) 1
4. Pédologie I, II (oral) 1
5. Mécanique des constructions I, II (oral) 1
6. Biologie générale et Biotechnologie (oral) 1
7. Probabilité et statistique (écrit) 1
8. Hydrologie I, II (écrit) 1

Branches pratiques
9. TP de Physique générale (hiver) 1
10. Hydraulique I, II, Laboratoire (hiver + été) 1
11. Formation professionnelle complémentaire I, II (hiver + été) 1
12. Topographie, Campagne (été) 1

Conditions de réussite:
moyenne des branches 1 à 8 ≥ 6,0 et
moyenne des branches 9 ≥ 12 ≥ 6,0.

Article 4 - Promotion en 4e année
Branches théoriques - Session de printemps coefficient
1. Physique du sol et Hydraulique agricole 1
2. Ecologie I, II 1
3. Assainissement des agglomérations I, II 1
4E Gestion et conservation des sols
(Spécialisation «Environnement») 1
4M Théorie des erreurs II
(Spécialisation «Mensuration») 1

Branches théoriques - Session d'été
5. Droit I, II 1
6. Systèmes d'information géographique I, II et Photo-interprétation 1
7M Mensuration cadastrale
(Spécialisation «Mensuration») 1
8M Photogrammétrie I, II
(Spécialisation «Mensuration») 1

Branches pratiques
9. Agronomie générale II et Pédologie III, projet (été) 1
10. Mécanique des sols II, projet (été) 1
11. Construction I, II, III, projet (hiver + été) 1
12. HTE: Hydrologie, projet (été) 1
13E Génie microbiologique, laboratoire (hiver) 1
(Spécialisation «Environnement») 1
13M Bases de données, projet (hiver)
(Spécialisation «Mensuration») 1

Conditions de réussite:
moyenne des branches 1 à 6 (Spécialisation «Environnement») ou 1 à 8 (Spécialisation «Mensuration») ≥ 6,0 et moyenne des branches 9 à 13 ≥ 6,0.

Article 5 - Admission à l'examen final (dès 90/91)
Branches pratiques - Tronc commun coefficient
1. Aménagement des terres et des eaux
Irrigation, projet (hiver) 1
2. Remaniement parcellaire III
Aménagements ruraux (projet) (hiver + été) 1
3. Matériaux de construction II, Laboratoire (hiver) 1
4. HTE: Sociologie rurale, projet (été) 1
5. Génie rural, Campagne (hiver) et travaux de Génie rural 2

Branches pratiques - Spécialisation «Environnement»
6E Génie sanitaire III, Valorisation biologique des déchets II, Gestion du milieu naturel, projet (été) 2
7E Génie de l'environnement, Campagne (hiver) et travaux de Génie de l'environnement 2

Branches pratiques - Spécialisation «Mensuration»
6M Systèmes d'information du territoire III, IV, Topographie appliquée I, II, Séminaires de mensuration, projet (hiver + été) 2
7M Mensuration, Campagne (hiver) et travaux de mensuration 2

Conditions de réussite:
moyenne des branches 1 à 7 ≥ 6,0.

Article 5B - Admission à l'examen final (seulement pour 1989/90)
Branches théoriques coefficient
Session de printemps Photogrammétrie III (option mensuration) 1
1. et 2. Stations d'épurations rurales 1

Session d'été Remaniement parcellaire III (option génie rural) 1

Branches pratiques
3. Aménagement du territoire I, II projet (hiver + été) 1
4. Réseaux d'égouts, projet (été) 1
5. Transport I, II, projet (été) 1
6. Génie rural, Campagne et TP (hiver) 1
7. Topographie, campagne II (hiver) 1
8. Mensuration cadastrale, campagne (hiver) 1
9. HTE: Sociologie rurale, projet (été) 1
10. Direction et organisation des travaux (été) 1

Condition de réussite:
moyenne des branches 1 à 10 ≥ 6,0.

Article 6 - Diplôme
(dès 90/91)
Examen final (EF)
Tronc commun coefficient
1. Construction I à III 1
2. Aménagement (a) 1
3. Génie rural (b) 2

a) comprend les branches suivantes:
Aménagement du territoire I, II Remaniement parcellaire I, II, III Aménagements ruraux

b) comprend les branches suivantes:
Aménagement des terres et des eaux Hydrologie I à III Séminaires de génie rural
Spécialisation « Environnement »
4. Génie sanitaire (c) 2
5. Protection de l'environnement (d) 2
 c) comprend les branches suivantes:
 Génie sanitaire I, II
 Traitement des déchets I, II
 Valorisation biologique des déchets I, II
 Construction des ouvrages de génie sanitaire
 Approvisionnement en eau potable
 d) comprend les branches suivantes:
 Qualité des eaux et Ecotoxicologie I à III
 Gestion du milieu naturel
 Pollution et déposition atmosphérique
 Végétation I, II

Spécialisation « Mesuration »
4. Cartographie et Systèmes d'information du territoire (a) 2
5. Géodécie et Topométrie (f) 1
6. Droit III, IV 1
 e) comprend les branches suivantes:
 Cartographie numérique
 Systèmes d'information du territoire I à IV
 f) comprend les branches suivantes:
 Géodécie I, II
 Topométrie appliquée I, II

La note EF s'obtient par le calcul de la moyenne des notes attribuées aux branches théoriques ci-dessus. Moyenne exigée pour se présenter au travail pratique de diplôme ≥ 6,0.

Travail pratique de diplôme (TPD)
Une seule note est attribuée au TPD. La réussite du TPD implique l'obtention d'une note ≥ 6,0.
La durée du travail pratique de diplôme est de deux mois.
Le travail pratique de diplôme s'effectue dans les domaines couvrant les branches suivies au 2e cycle.

Diplôme
La note de diplôme s'obtient en calculant la moyenne des notes EF + TPD.

Art. 68 - Diplôme (seulement pour 1989/90)

Examen final (EF) coefficient
1. Construction I, II 1
2. Mesuration cadastrale I, II 1
3. Mesuration 1, 2 si option
4. Génie rural 1, 2 si option
5. Génie de l'environnement 1, 2 si option

Les branches 3, 4 et 5 font chacune l'objet d'une seule épreuve combinée, où le candidat est interrogé par le groupe des enseignants concernés, sur les branches désignées ci-après:

Branche 3: Mesuration
Pour les étudiants ayant suivi l'option « Mesuration »
Géodécie I, II
Astronomie de position I, II
Mesuration technique et industrielle I, II
Théorie des erreurs II
Informatique appliquée
Systèmes d'information, banque de données

Pour les autres dispositions, veuillez consulter l'ordonnance du contrôle des études.

Pour les étudiants n'ayant pas suivi l'option « Mensuration »
Géodécie I
Astronomie de position I
Mesuration technique et industrielle I

Branche 4: Génie rural
Pour les étudiants ayant suivi l'option « Génie rural »
Hydraulique agricole
Hydrologie générale et hydrologie appliquée
Aménagement agricole des terres et des eaux
Irrigation des terres
Assainissement des sols
Télédétection appliquée

Pour les étudiants n'ayant pas suivi l'option « Génie rural »
Hydraulique agricole
Hydrologie générale
Aménagement agricole des terres et des eaux

Branche 5: Génie de l'environnement
Pour les étudiants ayant suivi l'option « Génie de l'environnement »
Aménagement du territoire I, II
Protection de la nature et du paysage
Épuration des eaux usées
Stations d'épurations rurales
Valorisation des déchets
Assainissement régional
Alimentation en eau potable
Génie biologique

Pour les étudiants n'ayant pas suivi l'option « Génie de l'environnement »
Aménagement du territoire I, II
Épuration des eaux usées
Assainissement régional
Alimentation en eau potable
Génie biologique

La note EF s'obtient par le calcul de la moyenne des notes attribuées aux branches théoriques ci-dessus.
La moyenne exigée pour se présenter au travail pratique de diplôme: ≥ 6,0.

Travail pratique de diplôme
Une seule note est attribuée au TPD. La réussite du TPD implique l'obtention d'une note ≥ 6,0.
La durée du travail pratique est de deux mois.
Dans la règle, le travail pratique de diplôme s'effectue dans le domaine d'une des deux options choisies.

Diplôme
La note de diplôme s'obtient en calculant la moyenne des notes EF + TPD.

Art. 7 - Campagnes de terrain
Les campagnes faisant l'objet de travaux pratiques sont:
— après le 4e semestre: 2 semaines,
 Campagne de topographie
Pour 1989/90 seulement:
— avant le 7e semestre: 6 semaines, (y compris la 1re semaine
du 7e semestre) campagne de génie rural, topographie II et
 travaux interdisciplinaires.
 Dès 1990/91:
— avant le 7e semestre: 6 semaines, (y compris la 1re semaine
du 7e semestre), à savoir:
 Campagne de génie rural, 3 semaines
 Campagne de génie de l'environnement (spécialisation
 "Environnement"), 3 semaines
ou
 Campagne de génie rural, 3 semaines
 Campagne de mensuration (spécialisation "Mensuration"),
 3 semaines.

Les campagnes comprennent au total 5 semaines de terrain et
1 semaine de travail de bureau.

1 RS 414.132.2
2 RS 211.432.261
Article 8 - Brevet fédéral d’ingénieur géomètre

1. Le brevet fédéral d’ingénieur géomètre, délivré par le Département fédéral de justice et police, autorise les candidats de nationalité suisse à exécuter les mesurations cadastrales sur le territoire de la Confédération (voir Ordonnance concernant le brevet fédéral d’ingénieur géomètre du 12 décembre 1983)².

2. Pour obtenir le brevet, le candidat doit prouver qu’il a la formation théorique nécessaire et subir l’examen de brevet. Seul le diplôme avec la mention «Mensuration» donne la formation théorique nécessaire.

3. Le Département fédéral de justice et police, autorité supérieure de surveillance du cadastre et des examens fédéraux du brevet, peut se faire représenter par une délégation aux examens de diplôme. L’EPFL informe régulièrement et en temps utile le Département fédéral de justice et police (directeur des mensurations cadastrales).

Article 9 - Abrogation du droit en vigueur

Le règlement spécial des épreuves de diplôme de la Section de Génie rural et Géomètre du 28 mars 1970 est abrogé.

Article 10 - Entrée en vigueur

Le présent règlement entre en vigueur le 11 mai 1989.

Au nom du Conseil des Ecoles polytechniques fédérales:

Le président: H. Ursprung
Le secrétaire: J. Fulda
Sciences de base : 1030 h

- analyse
- algèbre linéaire
- géométrie
- programmation
- mécanique
- physique
- chimie
- biologie
- probabilités et statistiques
- analyse numérique
- travaux pratiques de physique
- infographie et dessin technique
Sciences appliquées : 600 h

- Géologie
- Hydraulique
- Hydrologie
- Pédologie
- Physique du sol
- Hydraulique agricole
- Agronomie générale
Environnement : 200 h
- Milieu naturel
- Biotechnologies
- Ecologie
- Assainissement des agglomérations
Non technique : 200 h

- Formation professionnelle complémentaire
- Systèmes d'information géographique
- Droit
- HTE-économie rurale
- HTE-sociologie rurale
Génie rural : 460 h
- Assainissement des sols
- Irrigation
- Remaniement parcellaire
- Aménagement du territoire
- Aménagements ruraux
- Routes et chemins ruraux
- Equipements ruraux
- Séminaires

Construction : 290 h
- Mécanique des sols
- Mécanique des constructions
- Matériaux de construction
- Construction
Environnement : 600 h

- Génie sanitaire
- Construction d'ouvrages de génie sanitaire
- Approvisionnement en eau potable
- Qualité des eaux et ecotoxicologie
- Gestion et conservation des sols
- Traitement des déchets
- Valorisation biologique des déchets
- Gestion du milieu naturel
- Végétation
- Pollution et déposition atmosphérique
- Génie microbiologique
Mensuration : 600 h

- Théorie des erreurs
- Topométrie appliquée
- Géodésie
- Photogrammétrie
- Cartographie numérique
- Mensuration cadastrale
- Droit
- Banques de données
- Système d'information du territoire
- Séminaires de mensuration
Mensuration : 200 h
- Topographie
- Théorie des erreurs
- Photo-interprétation
GENIE RURAL ET GEOMETRE

Plan d'études : contrôle

1ère année
- 1er propédeutique
- Branches pratiques

2ème année
- 2ème propédeutique
- Branches pratiques

3ème année
- Examen de promotion
- Branches pratiques

4ème année
- Branches pratiques
- Examen théorique de diplôme

Travail pratique de diplôme
- Défense orale

Diplôme d'ingénieur du génie rural EPFL
avec mention environnement ou mensuration
CAMPAGNES DE TERRAIN

A la fin du 4 ème semestre :

- Campagne de topographie
 (2 semaines)

Avant le 7 ème semestre :

- Campagne de génie rural
 (3 semaines)

Et selon l'option

- Campagne de génie de l'environnement
 (3 semaines)

- Campagne de mensuration
 (3 semaines)
<table>
<thead>
<tr>
<th>Enseignant(s)</th>
<th>page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALOU F.</td>
<td>72</td>
</tr>
<tr>
<td>ARBENZ K.</td>
<td>122</td>
</tr>
<tr>
<td>BENOIT W.</td>
<td>25</td>
</tr>
<tr>
<td>BONJOUR J.-D.</td>
<td>8</td>
</tr>
<tr>
<td>BOVY Ph.</td>
<td>103, 119</td>
</tr>
<tr>
<td>BRUSCHIN J.</td>
<td>36</td>
</tr>
<tr>
<td>BUSER P.</td>
<td>4, 15</td>
</tr>
<tr>
<td>CALOZ R.</td>
<td>41, 52, 97</td>
</tr>
<tr>
<td>CHARLES J.-P.</td>
<td>49, 67</td>
</tr>
<tr>
<td>CROTTAZ R.</td>
<td>69</td>
</tr>
<tr>
<td>DESCLOUX G.</td>
<td>34</td>
</tr>
<tr>
<td>DOUCHET J.</td>
<td>1, 12</td>
</tr>
<tr>
<td>DUPRAZ H.</td>
<td>63, 81</td>
</tr>
<tr>
<td>FALTINGS B.</td>
<td>5, 16</td>
</tr>
<tr>
<td>GABUS J.</td>
<td>9, 19</td>
</tr>
<tr>
<td>GRAF W.H.</td>
<td>27, 36</td>
</tr>
<tr>
<td>GIOVANNONI J.-M.</td>
<td>81</td>
</tr>
<tr>
<td>GOİAY F.</td>
<td>91, 93</td>
</tr>
<tr>
<td>HAINARD F.</td>
<td>104, 121</td>
</tr>
<tr>
<td>HOWALD P.</td>
<td>11, 21, 32, 33, 45, 46</td>
</tr>
<tr>
<td>HUNKELER P.</td>
<td>10, 20, 114</td>
</tr>
<tr>
<td>JAVET Ph.</td>
<td>7</td>
</tr>
<tr>
<td>JATON J.-F.</td>
<td>110</td>
</tr>
<tr>
<td>KOCIAN P.</td>
<td>25</td>
</tr>
<tr>
<td>KOLBL O.</td>
<td>62, 76, 82, 87</td>
</tr>
<tr>
<td>LERCH P.</td>
<td>7</td>
</tr>
<tr>
<td>LIEBLING Th-M.</td>
<td>3, 14</td>
</tr>
<tr>
<td>MARTIN J.-L.</td>
<td>18, 24</td>
</tr>
<tr>
<td>MERMOUD A.</td>
<td>94</td>
</tr>
<tr>
<td>MICHEL N.</td>
<td>53, 54, 74</td>
</tr>
<tr>
<td>MIEHLBRADT M.</td>
<td>51, 73</td>
</tr>
<tr>
<td>MISEREZ A.</td>
<td>84, 88, 89, 90, 92, 96, 105, 106, 107, 108, 109</td>
</tr>
<tr>
<td>MISEREZ J.-P.</td>
<td>65, 83</td>
</tr>
<tr>
<td>MORGENTHALER S.</td>
<td>23, 35</td>
</tr>
<tr>
<td>MULLER S.</td>
<td>120</td>
</tr>
<tr>
<td>MUSY A.</td>
<td>28, 37, 47, 48, 70, 95, 96, 111</td>
</tr>
<tr>
<td>PERINGER P.</td>
<td>26, 42, 60, 101, 102, 115</td>
</tr>
<tr>
<td>PERNET J.-I.</td>
<td>26</td>
</tr>
<tr>
<td>PFLUG L.</td>
<td>30, 39</td>
</tr>
<tr>
<td>PLATTNER E.</td>
<td>7</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>RAPPAZ J.</td>
<td>22</td>
</tr>
<tr>
<td>RECORDON E.</td>
<td>50, 71</td>
</tr>
<tr>
<td>RIESEN A.</td>
<td>25</td>
</tr>
<tr>
<td>SCHALLER R.</td>
<td>6, 17</td>
</tr>
<tr>
<td>SCHNEIDER J.-R.</td>
<td>68, 112</td>
</tr>
<tr>
<td>SINNIGER R.</td>
<td>120</td>
</tr>
<tr>
<td>SPACCAPIETRA S.</td>
<td>64</td>
</tr>
<tr>
<td>TARRADELLAS J.</td>
<td>43, 56, 58, 77</td>
</tr>
<tr>
<td>TERCIER P.</td>
<td>53</td>
</tr>
<tr>
<td>URECH J.-D.</td>
<td>98, 113</td>
</tr>
<tr>
<td>VALLAT J.</td>
<td>55, 75</td>
</tr>
<tr>
<td>VEDY J.-C.</td>
<td>29, 38, 66, 61, 80, 85</td>
</tr>
<tr>
<td>WASSERFALLEN C.</td>
<td>98, 113</td>
</tr>
<tr>
<td>ZWAHLEN B.</td>
<td>2, 13</td>
</tr>
</tbody>
</table>
TABLE DES MATIERES SELON LE PLAN D'ETUDES

<table>
<thead>
<tr>
<th>Cours</th>
<th>Enseignant</th>
<th>Semestre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sciences de base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse III</td>
<td>J. Douchet</td>
<td>1er/2e</td>
<td>1, 12</td>
</tr>
<tr>
<td>Analyse I, II (cours en allemand)</td>
<td>B. Zwahlens</td>
<td>1er/2e</td>
<td>2, 13</td>
</tr>
<tr>
<td>Analyse III</td>
<td>J. Rappaz</td>
<td>3e</td>
<td>22</td>
</tr>
<tr>
<td>Analyse numérique</td>
<td>J. Desclaux</td>
<td>4e</td>
<td>34</td>
</tr>
<tr>
<td>Algèbre linéaire I, II</td>
<td>Th.M. Liebling</td>
<td>1er/2e</td>
<td>3, 14</td>
</tr>
<tr>
<td>Géométrie I, II</td>
<td>P. Busce</td>
<td>1er/2e</td>
<td>4, 15</td>
</tr>
<tr>
<td>Probabilité et statistique I, II</td>
<td>S. Morgenthaler</td>
<td>3e/4e</td>
<td>23, 35</td>
</tr>
<tr>
<td>Programmation I, II</td>
<td>B. Faltings</td>
<td>1er/2e</td>
<td>5, 16</td>
</tr>
<tr>
<td>Mécanique générale I, II</td>
<td>R. Schaller</td>
<td>1er/2e</td>
<td>6, 17</td>
</tr>
<tr>
<td>Physique générale I, II</td>
<td>J.-L. Martin</td>
<td>2e/3e</td>
<td>18, 24</td>
</tr>
<tr>
<td>TP de Physique générale</td>
<td>W. Benoit, P. Kocian, A. Riesen</td>
<td>3e</td>
<td>25</td>
</tr>
<tr>
<td>Chimie appliquée</td>
<td>Ph. Javel, E. Plattner, P. Lerch</td>
<td>1er</td>
<td>7</td>
</tr>
<tr>
<td>Biologie générale</td>
<td>P. Péringue, J.-J. Pernet</td>
<td>3e</td>
<td>26</td>
</tr>
<tr>
<td>Infographie et dessin technique</td>
<td>J.-D. Bonjour</td>
<td>1er</td>
<td>8</td>
</tr>
<tr>
<td>Sciences appliquées</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Géologie I, II</td>
<td>J.-H. Gabus</td>
<td>1er/2e</td>
<td>9, 19</td>
</tr>
<tr>
<td>Hydraulique I + II</td>
<td>W. Graf + Graf/J. Bruschn</td>
<td>3e/4e</td>
<td>27, 36</td>
</tr>
<tr>
<td>Hydrologie I, II</td>
<td>A. Musy</td>
<td>3e/5e</td>
<td>28, 47</td>
</tr>
<tr>
<td>Physique du sol</td>
<td>A. Musy</td>
<td>4e</td>
<td>37</td>
</tr>
<tr>
<td>Hydraulique agricole</td>
<td>A. Musy</td>
<td>5e</td>
<td>48</td>
</tr>
<tr>
<td>Pédocologie I, II, III</td>
<td>J.-C. Védy</td>
<td>3e/4e/6e</td>
<td>29, 38, 66</td>
</tr>
<tr>
<td>Agrononnie générale I, II</td>
<td>J.-P. Charles</td>
<td>5e/6e</td>
<td>49, 67</td>
</tr>
<tr>
<td>Génie rural et aménagement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remaniement parcellaire I, II</td>
<td>J.-R. Schneider</td>
<td>6e</td>
<td>68</td>
</tr>
<tr>
<td>Routes et chemins</td>
<td>R. Crottaz</td>
<td>6e</td>
<td>69</td>
</tr>
<tr>
<td>Aménagement des terres et des eaux I</td>
<td>A. Musy</td>
<td>6e</td>
<td>70</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mécanique des constructions I, II</td>
<td>L. Pflug</td>
<td>3e/4e</td>
<td>30, 39</td>
</tr>
<tr>
<td>Mécanique des sols I, II</td>
<td>E. Recordon</td>
<td>5e/6e</td>
<td>50, 71</td>
</tr>
<tr>
<td>Matériaux de construction I</td>
<td>F. Alou</td>
<td>6e</td>
<td>72</td>
</tr>
<tr>
<td>Construction I, II</td>
<td>M. Miehlbradt</td>
<td>5e/6e</td>
<td>51, 73</td>
</tr>
<tr>
<td>Divers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation prof. compl. I</td>
<td>L.Y. Maystre</td>
<td>3e</td>
<td>31</td>
</tr>
<tr>
<td>Formation prof. compl. II</td>
<td>L.Y. Maystre</td>
<td>4e</td>
<td>40</td>
</tr>
<tr>
<td>Systèmes d'information géogr. I, II</td>
<td>R. Caloz</td>
<td>4e/5e</td>
<td>41, 52</td>
</tr>
<tr>
<td>Droit I, II</td>
<td>P. Tercier/N. Michel</td>
<td>5e/6e</td>
<td>53, 74, 54</td>
</tr>
<tr>
<td>ITE : Economie rurale I, II</td>
<td>J. Vallat</td>
<td>5e/6e</td>
<td>55, 75</td>
</tr>
<tr>
<td>Milieu naturel et environnement - tronc commun:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milieu naturel I, II</td>
<td>P. Hunkeler</td>
<td>1er/2e</td>
<td>10, 20</td>
</tr>
<tr>
<td>Biotechnologie</td>
<td>P. Péringue</td>
<td>4e</td>
<td>42</td>
</tr>
<tr>
<td>Ecologie I, II</td>
<td>J. Tarradellas</td>
<td>4e/5e</td>
<td>43, 56</td>
</tr>
<tr>
<td>Assainissement des agglomérations I, II</td>
<td>L. Y. Maystre</td>
<td>4e/5e</td>
<td>44, 57</td>
</tr>
<tr>
<td>Mensuration - tronc commun</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topographie I à IV</td>
<td>P. Howald</td>
<td>1er au 4e</td>
<td>11, 21, 32, 45</td>
</tr>
<tr>
<td>Théorie des erreurs I</td>
<td>P. Howald</td>
<td>3e</td>
<td>33</td>
</tr>
<tr>
<td>Photo-interprétation</td>
<td>O. Köbl</td>
<td>6e</td>
<td>76</td>
</tr>
<tr>
<td>Cours</td>
<td>Enseignant</td>
<td>Semestre</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Milieu naturel et environnement -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spécialisation :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualité des eaux et écotoxicologie I, II,</td>
<td>J. Tarradellas</td>
<td>5e/6e</td>
<td>58, 77</td>
</tr>
<tr>
<td>Approvisionnement en eau potable</td>
<td>L.Y. Maystre</td>
<td>5e</td>
<td>59</td>
</tr>
<tr>
<td>Traitement des déchets I</td>
<td>L.Y. Maystre</td>
<td>6e</td>
<td>78</td>
</tr>
<tr>
<td>Génie sanitaire I</td>
<td>L.Y. Maystre</td>
<td>6e</td>
<td>79</td>
</tr>
<tr>
<td>Génie microbiologique</td>
<td>P. Péringuer</td>
<td>5e</td>
<td>60</td>
</tr>
<tr>
<td>Gestion et conservations des sols</td>
<td>J.-C. Védy</td>
<td>5e</td>
<td>61</td>
</tr>
<tr>
<td>Végétation I</td>
<td>J.-C. Védy</td>
<td>6e</td>
<td>80</td>
</tr>
<tr>
<td>Pollution et déposition atmosph. I</td>
<td>J.-M. Giovannoni</td>
<td>6e</td>
<td>81</td>
</tr>
<tr>
<td>Mensuration - Spécialisation :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photogrammétrie I, II</td>
<td>O. Kölbl</td>
<td>5e/6e</td>
<td>62, 82</td>
</tr>
<tr>
<td>Théorie des erreurs II</td>
<td>H. Dupraz</td>
<td>5e</td>
<td>63</td>
</tr>
<tr>
<td>Bases de données</td>
<td>S. Spacapietra</td>
<td>5e</td>
<td>64</td>
</tr>
<tr>
<td>Systèmes d'info. du territoire, I, II</td>
<td>J.-P. Miserez</td>
<td>5e/6e</td>
<td>65, 83</td>
</tr>
<tr>
<td>Mensuration cadastrale</td>
<td>A. Miserez</td>
<td>6e</td>
<td>84</td>
</tr>
<tr>
<td>Seulement pour 1989/90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pédologie III</td>
<td>J.-C. Védy</td>
<td>7e</td>
<td>85</td>
</tr>
<tr>
<td>Théorie des erreurs II</td>
<td>H. Dupraz</td>
<td>7e</td>
<td>86</td>
</tr>
<tr>
<td>Photogrammétrie III</td>
<td>O. Kölbl</td>
<td>7e</td>
<td>87</td>
</tr>
<tr>
<td>Mensuration cadastrale et campagne</td>
<td>A. Miserez</td>
<td>7e</td>
<td>88</td>
</tr>
<tr>
<td>Géodésie I, II</td>
<td>A. Miserez</td>
<td>7e/8e</td>
<td>89, 106</td>
</tr>
<tr>
<td>Astronomie de position I, II</td>
<td>A. Miserez</td>
<td>7e/8e</td>
<td>90, 107</td>
</tr>
<tr>
<td>Informatique appliquée</td>
<td>F. Golay</td>
<td>7c</td>
<td>91</td>
</tr>
<tr>
<td>Mensuration technique industrielle I, II</td>
<td>A. Miserez</td>
<td>7e/8e</td>
<td>92, 108</td>
</tr>
<tr>
<td>Systèmes d'info.-Banque de données</td>
<td>F. Golay</td>
<td>7e</td>
<td>93</td>
</tr>
<tr>
<td>Séminaire/TP mensurations</td>
<td>A. Miserez</td>
<td>8e</td>
<td>109</td>
</tr>
<tr>
<td>Hydrologie appliquée</td>
<td>J.-F. Jaton</td>
<td>8e</td>
<td>110</td>
</tr>
<tr>
<td>Irrigation des terres</td>
<td>A. Mermoud</td>
<td>7e</td>
<td>94</td>
</tr>
<tr>
<td>Assainissement des sols</td>
<td>A. Musy</td>
<td>7e</td>
<td>95</td>
</tr>
<tr>
<td>Travaux pratiques GRG</td>
<td>A. Musy/A. Miserez</td>
<td>7c</td>
<td>96</td>
</tr>
<tr>
<td>Séminaires et TP GR</td>
<td>A. Musy</td>
<td>8e</td>
<td>111</td>
</tr>
<tr>
<td>Télédétectio appliquée</td>
<td>R. Caloz</td>
<td>7e</td>
<td>97</td>
</tr>
<tr>
<td>Remaniement parcelaire III</td>
<td>J.-R. Schneider</td>
<td>8e</td>
<td>112</td>
</tr>
<tr>
<td>Aménagement du territoire I, II</td>
<td>C. Wasserfallen/F.-D. Urect</td>
<td>7e/8e</td>
<td>98, 113</td>
</tr>
<tr>
<td>Stations d'épuration rurales</td>
<td>L.Y. Maystre</td>
<td>7e</td>
<td>99</td>
</tr>
<tr>
<td>Décéhs solides</td>
<td>L.Y. Maystre</td>
<td>7e</td>
<td>100</td>
</tr>
<tr>
<td>Valorisation des déchets</td>
<td>P. Péringuer</td>
<td>7e</td>
<td>101</td>
</tr>
<tr>
<td>Protection de la nature et du paysage</td>
<td>P. Hunkeler</td>
<td>8e</td>
<td>114</td>
</tr>
<tr>
<td>Protection de l'environnement</td>
<td>L.Y. Maystre/P. Péringuer/C. Wasserfallen</td>
<td>7e/8e</td>
<td>102, 115</td>
</tr>
<tr>
<td>Assainissement régional</td>
<td>L.Y. Maystre</td>
<td>8e</td>
<td>116</td>
</tr>
<tr>
<td>Alimentation en eau potable</td>
<td>L.Y. Maystre</td>
<td>8e</td>
<td>117</td>
</tr>
<tr>
<td>Réseaux d'égouts</td>
<td>L.Y. Maystre</td>
<td>8e</td>
<td>118</td>
</tr>
<tr>
<td>Transport I,II</td>
<td>Ph. Bovy</td>
<td>7e/8e</td>
<td>103, 119</td>
</tr>
<tr>
<td>Enseignement non-technique :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction et organisation des travaux</td>
<td>R. Sinniger/S. Muller</td>
<td>8e</td>
<td>120</td>
</tr>
<tr>
<td>HTE: Sociologie rurale + projet</td>
<td>F. Hainard</td>
<td>7e/8e</td>
<td>104, 121</td>
</tr>
<tr>
<td>Mathématiques (répétition)</td>
<td>K. Arbenz</td>
<td>1er</td>
<td>122</td>
</tr>
</tbody>
</table>

Campagnes :

- Campagne de Topographie I
 - P. Howald
 - 4e
 - 46

- Campagne de Topographie II
 - A. Miserez
 - 7e
 - 105
OBJECTIFS

Etude des méthodes principales du calcul différentiel et intégral de fonctions d'une variable en vue des applications aux problèmes physiques et techniques.

CONTENU

Notions de base: nombres réels et complexes, fonctions, limite, continuité, dérivée, intégrale.
Série de Taylor. Séries entières.
Equations différentielles et ordinaires.
Méthodes numériques.
Applications géométriques et mécaniques.

FORME DE L'ENSEIGNEMENT : Ex cathedra et exercices en salle.

LIASON AVEC D'AUTRES COURS :

Préalable requis :
Préparation pour :
Titre: ANALYSIS I

Enseignant: B. ZWAHLLEN; Professeur EPFL/DMA

<table>
<thead>
<tr>
<th>Heures totales</th>
<th>120</th>
<th>Par semaine:</th>
<th>Cours 4</th>
<th>Exercices 4</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG., GR+G</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC., MI</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL., PH</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MX., MAT., INF.</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Etude du calcul différentiel et intégral: notions, méthodes, résultats.

CONTENU

INHALT:

Differential- und Integralrechnung der Funktionen einer Variablen.

- Grundbegriffe (reelle und komplexe Zahlen, Grenzwert)
- Funktionen
- Stetigkeit
- Ableitungen
- Locales Verhalten einer Funktion, Maxima und Minima
- Die Taylorsche Entwicklung, Potenzreihen
- Spezielle Funktionen
- Integrale und Stammfunktionen
- Uneigentliche Integrale

Lineare Differentialgleichungen.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra, exercices en salle.

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Un cours polycopié en allemand sera à disposition au début de l'année académique.

Préalable requis:

Préparation pour:

Titre: ALGÈBRE LINEAIRE 1

Enseignant: Prof. Th.M. LIEBLING, EPFL/DMA

Heures totales: 45 Par semaine: Cours 2 Exercices 1 Pratique

Destinataires et contrôle des études

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil</td>
<td>1er</td>
<td>x</td>
<td></td>
<td></td>
<td>Théoriques</td>
</tr>
<tr>
<td>Génie rural</td>
<td>1er</td>
<td>x</td>
<td></td>
<td></td>
<td>Théoriques</td>
</tr>
<tr>
<td>Mécanique</td>
<td>1er</td>
<td>x</td>
<td></td>
<td></td>
<td>Théoriques</td>
</tr>
<tr>
<td>Microtechnique</td>
<td>1er</td>
<td>x</td>
<td></td>
<td></td>
<td>Théoriques</td>
</tr>
<tr>
<td>ETS</td>
<td>1er</td>
<td>x</td>
<td></td>
<td></td>
<td>Théoriques</td>
</tr>
</tbody>
</table>

OBJECTIFS
Apprendre aux futurs ingénieurs à formuler et à résoudre des problèmes d’algèbre linéaire.

CONTENU
- Systèmes d’équations linéaires et algorithme de Gauss
- Programmation linéaire et algorithme du simplexe
- Calcul matriciel, inversion des matrices, déterminants
- Espaces vectoriels
- Le calcul vectoriel dans IR³
- Les produits scalaires généralisés et les approximations par la méthode des moindres carrés.

FORME DE L’ENSEIGNEMENT: Ex cathedra, exercices en classe

DOCUMENTATION: Polycopié

LIAISON AVEC D’AUTRES COURS: Algèbre linéaire II, Mécanique et Physique I et II

Préalable requis:
Préparation pour:
Titre : GEOMETRIE I

Enseignant : Peter BUSER, professeur EPFL.

Heures totales : 45
Par semaine : Cours 2 Exercices 1 Pratique

Destinataires et contrôle des études
Section(s) Semestre Oblig. Facult. Option
Génie civil................. 1 x
Génie rural.............. 1 x
Mécanique.............. 1 x
Microtechnique......... 1 x

Branches
Théoriques Pratiques
x
x
x

OBJECTIFS
Développer la vision spatiale. Résoudre des problèmes concrets à l'aide de la géométrie graphique, vectorielle et différentielle.

CONTENU
1. Géométrie vectorielle
 longueur, distance, droites, plans, produit scalaire, produit vectoriel, produit mixte, aire, volume, etc.

2. Transformation du plan et de l'espace
 isométries, affinités, etc.

3. Axonométrie
 générale, orthogonale.

4. Projection stéréographique.

FORME DE L'ENSEIGNEMENT :
Exposé oral et exercices

DOCUMENTATION :

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Préparation pour :
Titre : PROGRAMMATION I

Enseignant : Boi FALTINGS, Professeur EPFL/DI

<table>
<thead>
<tr>
<th>Heures totales : 45</th>
<th>Par semaine : Cours 1 Exercices Pratique 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destinataires et contrôle des études :</td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>CHIMIE..................</td>
<td>1</td>
</tr>
<tr>
<td>GR + G...................</td>
<td>1</td>
</tr>
<tr>
<td>MATERIAUX..............</td>
<td>3</td>
</tr>
<tr>
<td>GC........................</td>
<td>3</td>
</tr>
</tbody>
</table>

OBJECTIFS

Savoir utiliser un système informatique simple et connaître les notions de base en programmation.

CONTENU

Programmation Pascal

Utilisation d'un ordinateur, langue de commande et éditeur.

Forme d'un programme. Déclarations et instructions. Expressions arithmétiques. Types de données élémentaires. Instructions élémentaires d'entrée et sortie.

Introduction aux applications : présentation graphique, analyse numérique, simulation.

FORME DE L'ENSEIGNEMENT : Ex cathedra. Exercices sur VAX

DOCUMENTATION : Fiches polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Préparation pour : Programmation II
Titre : MECANIQUE GENERALE I

Enseignant : SCHALLER Robert, chargé de cours EPFL/DP

Heures totales : 75
Par semaine : Cours 3 Exercices 2 Pratique

Destinataires et contrôle des études

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENIE CIVIL</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>GENIE RURAL</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>INFORMATIQUE</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>MATHEMATIQUES</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

OBJECTIFS

Amener l'étudiant à la maîtrise des méthodes de la physique qui permettent de décrire et de prédire le mouvement d'un point matériel ou particule.

CONTENU

- Introduction à la physique générale :
 observation des systèmes matériels; de l'univers; ordres de grandeur;
- Espace de configuration :
 description de la position d'un système matériel; éléments de calcul vectoriel; torseurs.
- Cinématique:
 Notions d'espace-temps; référentiels et repères; description du mouvement d'un point matériel et d'un solide indéformable; mouvements relatifs non relativistes.
- Dynamique de la particule :
 Lois de Newton; analyse des forces et des lois phénoménologiques; référentiels d'inertie; équations du mouvement; travail, puissance, énergie; lois de conservation.
- Mouvements oscillants :
 Étude de l'oscillateur harmonique, amorti, amorti-forcé comme modèle rheologique du comportement dynamique d'éléments d'une structure.
- Gravitation :
 mouvement des planètes, dynamique terrestre.
- Introduction à la relativité restreinte.

FORME DE L'ENSEIGNEMENT: Ex cathedra et exercices dirigés en salle

DOCUMENTATION: Liste d'ouvrages recommandés et corrigés d'exercices

LIAISON AVEC D'AUTRES COURS

Préalable requis: Niveau maturité
Préparation pour: Mécanique générale II, physique générale, mécanique appliquée, résistance des matériaux
OBJECTIFS

Acquérir ou compléter les connaissances de base en chimie générale et préparer ainsi l'accès aux enseignements ultérieurs en science et technologie moderne des matériaux.

Maîtriser le langage et la symbolique utilisés en chimie.

Illustrer le mode de pensée inductif grâce aux démonstrations présentées au cours notamment.

Servir de base aux relations interdisciplinaires; la chimie ou ses applications jouent un rôle croissant dans les sciences de l'ingénieur; le cours doit permettre au futur ingénieur de comprendre les bases de travail du chimiste et d'engager avec succès le dialogue.

CONTENU

- Structure atomique, tableau périodique, liaisons chimiques
- États de la matière, lois de base; règle de nomenclature.
- Réaction chimique; stoechiométrie, bilan énergétique; équilibres chimiques; affinités et potentiel chimique; éléments de cinétique et de photochimie.
- Métaux, non-métaux; fabrication de quelques composés importants; notions de chimie industrielle.
- Introduction à la chimie organique.
- Physico-chimie de l'eau; propriétés des ions en solution; acides et bases. Oxydo-réduction, loi de Nernst, série électrochimique. L'état colloidal.

FORME DE L'ENSEIGNEMENT: Cours ex cathédra avec démonstration; exercices en salle

DOCUMENTATION: livre PPR

LIAISON AVEC D'AUTRES COURS: Formation de base, préalable aux études de propriétés de la matière et des technologies. Niveau en chimie de la maturité fédérale.
<table>
<thead>
<tr>
<th>Titre:</th>
<th>INFOGRAPHIE ET DESSIN TECHNIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>BONJOUR Jean-Daniel</td>
</tr>
<tr>
<td>Heures total:</td>
<td>45</td>
</tr>
<tr>
<td>Par semaine:</td>
<td>Cours - Exercices 3 Pratique</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>GRG</td>
<td>1</td>
</tr>
</tbody>
</table>

OBJECTIFS

Susciter dès le début des études l'intérêt des étudiants pour l'informatique appliquée. Familiarisation à un système informatique convivial et à ses logiciels de base (environnement ne nécessitant aucune connaissance informatique préalable). Faire percevoir l'informatique comme un outil et non pas comme une discipline théorique fermée sur elle-même. Faciliter dès la première année l'intégration de l'informatique dans les autres enseignements, les exercices et les projets. Parallèlement : présentation des instruments de bureau et de dessin traditionnels.

A la fin du cours, les étudiants sauront utiliser un système informatique graphique simple (Macintosh):
- maîtrise de son système d'exploitation
- travail avec un logiciel de CAO
- mise en œuvre d'un «tableur/grapheur» (automatisation de traitements de données et présentation des résultats sous forme graphique)
- comparaison avec les instruments classiques de dessin et de report

CONTENU

Apprentissage d'un système d'exploitation graphique :
- gestion de fichiers par manipulation d'icônes, fenêtres, menus...
- techniques de base (édition, mise en page...)

Conception assistée par ordinateur (CAO) :
- principes généraux, outils de dessins, différents types d'objets
- édition, importation/exportation de données, sorties graphiques...

Mise en œuvre d'un «tableur/grapheur» :
- principes généraux, formules, formatage des cellules, fonctions, gestion de données
- graphiques
- macro-programmation...

Utilisation de périphériques graphiques du type :
- imprimantes graphiques, tables à dessin automatiques, traceurs
- tables de digitalisation...

Connaissance et utilisation des instruments de bureau traditionnels :
- outils de dessin, chablon
- cooridatographes rectangulaire et polaire, planimètre, pantographe...

FORME DE L'ENSEIGNEMENT : démonstrations et exercices pratiques

DOCUMENTATION : notes polycopiées

LIAISON AVEC D'AUTRES COURS :
Programmation, Topographie, Photogrammétrie, Mensuration cadastrale, SIG, SIT, Cartographie numérique
Titre : GEOLOGIE I

Enseignant : Jacques-H. GABUS, professeur EPFL / DGC

Heures totales : 30 Par semaine : Cours 2 Exercices Pratique

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRG</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, l'étudiant sera capable de comprendre la formation des principales familles de roches qui constituent la croûte terrestre.

CONTENU

- Structures de la Terre
- Les principaux minéraux
- Les roches endogènes
- Le volcanisme
- Les roches sédimentaires
- Le métamorphisme

FORME DE L'ENSEIGNEMENT : Ex cathedra et par moyens audio-visuels.

DOCUMENTATION : Cours polycopiés.

LIAISON AVEC D'AUTRES COURS :

Préparation pour : Pédologie - Matériaux de construction - Géotechnique et fondations - Hydrologie
Titre: Milieu naturel I

Enseignant: HUNKELER Pierre - chargé de cours

Heures total: 30 Par semaine: Cours 2 Exercices Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Comprendre les caractéristiques et la valeur du milieu naturel, les principes de sa gestion, les interactions entre l'homme et son environnement naturel.

CONTENU

Milieu naturel et paysage
- environnement et nature
- faune, flore, habitats naturels
- écosystèmes, biotopes, écotones
- principes écologiques
- approche du paysage

Relations homme-environnement naturel
- milieux et ressources
- services fournis par les espèces et les écosystèmes
- impacts des activités humaines

Gestion et conservation du milieu naturel
- principes et objectifs
- sources de données (inventaires, listes rouges, etc)
- bases légales
- gestion, aménagement, reconstitution

FORME DE L'ENSEIGNEMENT : Ex cathédra; discussions, études de cas.

DOCUMENTATION : notes de cours, bibliographie

LIAISON AVEC D'AUTRES COURS:
Préalable requis :

Préparation pour : Milieu naturel II, Ecologie I et II, gestion du milieu naturel
Titre: TOPOGRAPHIE I

Enseignant: Pierre HOWALD, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables de:

- faire des mesures avec des instruments topographiques.
- exécuter les calculs liés aux méthodes topométriques.
- élaborer un dossier de mesures, calculs et documents, propre et bien ordonné.
- préparer et organiser l'exécution d'un travail, analyser et qualifier les résultats.

CONTENU

1. Introduction: définition de la topographie - références - projections - cartes et plans topographiques - les travaux topographiques - les instruments topographiques.

FORME DE L'ENSEIGNEMENT: ex cathédra, avec démonstrations en salle.

DOCUMENTATION: cours polycopié. Documentation professionnelle.

LIAISON AVEC D'AUTRES COURS:
Préalable requis:
Campagne de terrain
Titre : ANALYSE II

Enseignant : J. DOUCHET, chargé de cours

<table>
<thead>
<tr>
<th>Heures total : 80</th>
<th>Par semaine : cours</th>
<th>4</th>
<th>Exercices</th>
<th>4</th>
<th>Pratiques</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Destinataires et contrôle des études :</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sections (4)</td>
<td>Semestre</td>
</tr>
<tr>
<td>Génie Civil</td>
<td>2</td>
</tr>
<tr>
<td>Génie Rural + G</td>
<td>2</td>
</tr>
<tr>
<td>Mécanique</td>
<td>2</td>
</tr>
<tr>
<td>Matériaux</td>
<td>2</td>
</tr>
</tbody>
</table>

OBJECTIFS

Etude des méthodes principales du calcul différentiel et intégral de fonctions de plusieurs variables en vue des applications aux problèmes physiques et techniques.

CONTENU

Dérivation partielle et différentiabilité des fonctions de plusieurs variables.
Formules de Taylor et ses applications.
Fonctions implicites.
Intégrandes doubles et triples.
Applications géométriques et mécaniques.

FORME DE L'ENSEIGNEMENT : Ex cathedra et exercices en salle.

DOCUMENTATION : J. Douchet & B. Zwahlen: Calcul différentiel et intégral, Vol. 2 & 4, PFR.

LIAISON AVEC D'AUTRES COURS :

Préalable requis :
Préparation pour :
Titre: ANALYSIS II

Enseignant: B. ZWAHLEN, Professeur EPFL/DMA

Heures totales: 80
Par semaine: Cours 4, Exercices 4, Pratique

Destinataires et contrôle des études

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC, GR+G</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MEC, ML</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EL, PH</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MX, MATH, INF</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Branches

Théoriques

Pratiques

OBJECTIFS

Etude du calcul différentiel et intégral: notions, méthodes; résultats.

CONTENU

INHALT:

Differential- und Integralrechnung der Funktionen mehrerer Variablen.

- Funktionen mehrerer Variablen
- Partielle Ableitungen
- Maxima und Minima, Extrema mit Nebenbedingungen, implizite Funktionen
- Die Taylorsche Entwicklung
- Mehrfach Integrale.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra, exercices en salle.

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Un cours polycopié en allemand sera à disposition au début de l'année académique.

Préalable requis:

Analysis I, Algèbre linéaire I.

Préparation pour:
Titre : ALGÈBRE LINEAIRE II

Enseignant : Prof. Th.M. LIEBLING, EPFL/DMA

Heures totales : 30

<table>
<thead>
<tr>
<th>Par semaine:</th>
<th>Cours</th>
<th>2</th>
<th>Exercices</th>
<th>1</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil</td>
<td>2e</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie rural</td>
<td>2e</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mécanique</td>
<td>2e</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microtechnique</td>
<td>2e</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETS</td>
<td>2e</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Apprendre aux futurs ingénieurs à formuler et à résoudre des problèmes d'algèbre linéaire.

CONTENU

- Coordonnées et changements de base
- Les applications linéaires
- Les valeurs propres et les vecteurs propres
- Les quadriques
- Éléments de la théorie des graphes.

FORME DE L'ENSEIGNEMENT : Ex cathedra, exercices en classe

DOCUMENTATION : Polycopié

LIAISON AVEC D'AUTRES COURS : Algèbre linéaire I, Mécanique et Physique I et II

Préalable requis:

Préparation pour:
Titre: GEOMETRIE II
Enseignant: Peter BUSER, professeur EPFL

<table>
<thead>
<tr>
<th>Heures totales :</th>
<th>30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Destinataires et contrôle des études</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil</td>
<td>2</td>
<td>×</td>
<td></td>
<td></td>
<td>Théoriques</td>
</tr>
<tr>
<td>Génie rural</td>
<td>2</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Mécanique</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Microtechnique</td>
<td>2</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>

OBJECTIFS
Développer la vision spatiale. Résoudre des problèmes concrets à l'aide de la géométrie graphique, vectorielle et différentielle.

CONTENU
5. Courbes
courbes planes et courbes dans l'espace; courbure, torsion, repère de Frenet, ordre de contact.

6. Surfaces
notion de surface, plan tangent, etc. ; surfaces réglées, surfaces de révolution; première et deuxième forme fondamentale, courbure géodésique.

7. Splines
introduction.

FORME DE L'ENSEIGNEMENT: Exposé oral et exercices.

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS Algèbre linéaire, Analyse, Introduction au langage graphique, Photogrammétrie, Topographie, Infographie.

Préalable requis:

Préparation pour:
Titre : PROGRAMMATION II

Enseignant : Boi FALTING, Professeur EPFL/DI

<table>
<thead>
<tr>
<th>Heures totales : 30</th>
<th>Par semaine : Cours 1</th>
<th>Exercices</th>
<th>Pratique 2</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR + G</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>GC</td>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaissances de la programmation avancée en PASCAL, connaissances élémentaires de Fortran.

CONTENU

Notions du langage de commande de VMS (commandes principales, directoires, sous-directoires, protection des fichiers, noms logiques, symboles).

Utilisation de Fichiers en Pascal.

Eléments de programmation Fortran (surtout différences avec Pascal).

FORME DE L'ENSEIGNEMENT : Ex cathedra. Exercices sur ordinateur VAX

DOCUMENTATION : Fiches polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis : Programmation I

Préparation pour : Divers cours et laboratoires requérant l'usage de l'ordinateur
Titre : MECANIQUE GENERALE II

Enseignant : SCHALLER Robert, chargé de cours EPFL/DP

<table>
<thead>
<tr>
<th>Heures totales : 40</th>
<th>Par semaine : Cours 2</th>
<th>Exercices 2</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destinataires et contrôle des études</td>
<td>Branches</td>
<td>Théoriques</td>
<td>Pratiques</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
</tr>
<tr>
<td>GENIE CIVIL.........</td>
<td>2</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>GENIE RURAL.........</td>
<td>2</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>INFORMATIQUE.......</td>
<td>2</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>MATHEMATIQUES......</td>
<td>2</td>
<td>☒</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
Amener l'étudiant à la connaissance des lois de la dynamique des systèmes matériels et à l'application de ces lois dans l'étude du mouvement et de l'équilibre, des solides et des systèmes de points matériels.

CONTENU

Systèmes matériels :
Réduction des tenseurs (forces et quantité de mouvement); moments statiques et centre de masse; interactions entre particules; équations du mouvement de systèmes matériels.

Dynamique du solide indéformable :
Moments d'inertie; tenseur d'inertie; ellipsoïde d'inertie; équations du mouvement d'un solide; analyse de l'équilibre d'un solide.

Notions de chocs, de particules et de solide.

Introduction à la mécanique analytique :
Equations de d'Alembert et de Lagrange pour les systèmes holonomes.

FORME DE L'ENSEIGNEMENT:
Ex cathedra et exercices dirigés en classe

DOCUMENTATION:
Liste d'ouvrages recommandés et corrigés d'exercices

LIAISON AVEC D'AUTRES COURS

Préalable requis: Mécanique générale I

Préparation pour: Physique générale, mécanique appliquée, résistance des matériaux
OBJECTIFS

A la fin du cours, l'étudiant possédera les notions de base nécessaires à la compréhension des phénomènes physiques qu'il rencontrera dans sa vie professionnelle. Il sera capable de prévoir quantitativement les conséquences de ces phénomènes avec les outils mathématiques appropriés. Il possèdera en physique une culture générale indispensable à un ingénieur de bon niveau.

CONTENU

FORME DE L'ENSEIGNEMENT : Cours donné ex cathedra illustré de nombreuses expériences et exercices.

DOCUMENTATION :

Cours polycopiés. Ouvrages spécifiques précisés au cours du semestre.

LIAISON AVEC D'AUTRES COURS :

Préalable requis : Mécanique I et II.

Préparation pour:
Titre : GEOLOGIE II

Enseignant : Jacques-H. GABUS, professeur EPFL / DGC

<table>
<thead>
<tr>
<th>Heures totales : 20</th>
<th>Par semaine : Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>GRG</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>............</td>
<td>...........</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>..........</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, l'étudiant sera capable de comprendre et de reconnaître les mécanismes essentiels de l'orogenèse et de la glyptogenèse.

CONTENU

- La tectonique
- Mécanisme et conséquence des plissements
- La carte géologique
- La glyptogenèse
- Désagrégation et altération des roches
- L'érosion
- Les eaux souterraines

FORME DE L'ENSEIGNEMENT : Ex cathedra et par moyens audio-visuels.

DOCUMENTATION : Cours polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Géologie I

Préparation pour : Pédologie - Matériaux de construction - Géotechnique et fondations
Titre: Milieu naturel II

Enseignant: HUNKELER, Pierre, chargé de cours

<table>
<thead>
<tr>
<th>Heures total :</th>
<th>20</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>2</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Comprendre les caractéristiques et la valeur du milieu naturel, les principes de sa gestion, les interactions entre l'homme et son environnement naturel.

CONTENU

- connaissance d'espèces de faune et de flore, de types de biotopes
- méthodes simples d'inventaire et de relevé
- utilisation de sources de données
- évaluation de quelques types de milieux et paysages
- cartographie d'éléments naturels
- études de cas d'aménagements

FORME DE L'ENSEIGNEMENT : travaux pratiques en salle et sur le terrain, séminaires

DOCUMENTATION : notes de cours, bibliographie

LIAISON AVEC D'AUTRES COURS :

Préalable requis :

Préparation pour : Ecologie I et II, gestion du milieu naturel.
Titre: TOPOGRAPHIE II

Enseignant: Pierre Howald, professeur EPFL

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables de:

- faire des mesures avec des instruments topographiques.
- exécuter les calculs liés aux méthodes topométriques.
- élaborer un dossier de mesures, calculs et documents, propre et bien ordonné.
- préparer et organiser l'exécution d'un travail, analyser et qualifier les résultats.

CONTENU

6. Connaissances des instruments et méthodes à mettre en application dans les travaux pratiques.

Travaux pratiques:
- initiation à l'emploi des instruments topographiques: théodolites, tachéomètres, niveaux.
- mesures d'angles, nivellements, levé de points.

FORME DE L'ENSEIGNEMENT: ex cathédra. Exercices et travaux pratiques sur le terrain et en salle. Travaux de groupe et individuels.

DOCUMENTATION: cours polycopié. Documentation professionnelle.

LIAISON AVEC D'AUTRES COURS:
Préalable requis: topographie I
Préparation pour: topographie III et IV - théorie des erreurs. Toutes les branches des mensuration. Campagnes de terrain.
Titre: ANALYSE III

Enseignant: Jacques RAPPAZ, professeur EPFL / DMA

<table>
<thead>
<tr>
<th>Heures totales:</th>
<th>75</th>
<th>Par semaine:</th>
<th>Cours 3</th>
<th>Exercices 2</th>
<th>Pratique</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Destinataires et contrôle des études</th>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAUX..........................</td>
<td>3</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>GENIE CIVIL.........................</td>
<td>3</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>GENIE RURAL & GEOMETRE...............</td>
<td>3</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>MECANIQUE...........................</td>
<td>3</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>------------</td>
</tr>
</tbody>
</table>

OBJECTIFS

Fournir les notions principales du calcul différentiel et intégral; étude de fonctions à plusieurs variables.

CONTENU

- Champs scalaires, champs vectoriels.
- Arcs, intégrales curvilignes.
- Morceaux de surfaces, intégrales de surface.
- Étude des opérateurs gradient, divergence, rotationnel, laplacien.
- Théorèmes de Stokes, du gradient, de la divergence, du rotationnel, formules de Green.
- Coordonnées cylindriques, sphériques. Opérateurs gradient, divergence, rotationnel et laplacien dans ces coordonnées.
- Équations différentielles; équations aux dérivées partielles du 2ème ordre.
- Séries de Fourier.
- Résolution numérique de problèmes aux limites.

FORME DE L'ENSEIGNEMENT: Ex cathedra, avec exercices en salle.

DOCUMENTATION: N. Piskounov : Calcul différentiel et intégral, vol. 1 et 2, Ed. Mir, Moscou.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Analyse I et II. Algèbre linéaire I et II.

Préparation pour:
Titre: PROBABILITÉ ET STATISTIQUE I

Enseignant: S. MORGENTHALER, professeur EPFL

<table>
<thead>
<tr>
<th>Heures totales</th>
<th>45</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie Civil</td>
<td>3e</td>
<td>☑️</td>
<td></td>
<td></td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Génie Rural</td>
<td>3e</td>
<td>☑️</td>
<td></td>
<td></td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Mécanique</td>
<td>3e</td>
<td>☑️</td>
<td></td>
<td></td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Physique</td>
<td>3e</td>
<td>☑️</td>
<td></td>
<td></td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Mécanique</td>
<td>ETS</td>
<td>☑️</td>
<td></td>
<td></td>
<td>☑️</td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Familiariser l'étudiant aux concepts fondamentaux des probabilités et des statistiques. Au terme du cours, l'étudiant devrait avoir assimilé ces concepts et ainsi pouvoir les utiliser.

CONTENU

- **Probabilités** : révision des notions de base
- **Variables aléatoires** : définition, moyenne, variance, covariance, corrélation
- **Lois discrètes** : de Bernoulli, binomiale, hypergéométrique, de Poisson, géométrique
- **Lois continues** : normale, Gamma, exponentielle, chi-carré, F, t
- **Théorie de probabilité** : théorème central limite, approximations par la loi normale
- **Estimation** : distributions d'échantillonnage, biais, erreur carrée, estimateurs du maximum de vraisemblance, méthode des moindres carrés, estimation par intervalle
- **Tests d'hypothèses** : erreurs de 1ère et 2ème espèces, puissance d'un test, test t et test F pour un modèle linéaire, test du chi-carré.

FORME DE L'ENSEIGNEMENT: cours ex cathedra et exercices en classe

DOCUMENTATION: feuillets polycopiés

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour: Statistique appliquée et cours professionnels utilisant les statistiques
TITRE : PHYSIQUE GÉNÉRALE II

Enseignant : MARTIN Jean-Luc, professeur DP/EPFL

<table>
<thead>
<tr>
<th>Heures total :</th>
<th>Par semaine : cours 3 - Exercices 2 - Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Sections(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie Civil</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie Rural</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mécanique</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, l'étudiant possèdera les notions de base nécessaires à la compréhension des phénomènes physiques qu'il rencontrera dans sa vie professionnelle. Il sera capable de prévoir quantitativement les conséquences de ces phénomènes avec les outils mathématiques appropriés. Il possèdera en physique, une culture générale indispensable à un ingénieur de bon niveau.

CONTENU

- **Phénomènes capillaires**.

- **Phénomènes de transport** : Conducteur de chaleur, équation de diffusion, couche limite, régime non stationnaire - Rayonnement, émission, absorption, corps noir, effet serre - Convection - Diffusion matérielle.

- **Physique nucléaire** : Forces nucléaires, radioactivité, fission, fusion.

FORME DE L'ENSEIGNEMENT : Cours donné ex cathedra illustré de nombreuses expériences et exercices.

DOCUMENTATION : Cours polycopiés. Ouvrages spécifiques précisés au cours du semestre.

LIAISON AVEC D'AUTRES COURS :

Préalable requis : Mécanique I et II.

Préparation pour :
OBJECTIFS

Les étudiants pourront acquérir la connaissance des phénomènes physiques de base ainsi que de leurs applications. L'accent sera mis sur l'assimilation de synthèse (phénomènes classés dans des chapitres différents, mais obéissant aux mêmes lois) ainsi que sur les méthodes d'observation et de mesure et la manipulation d'appareils et d'instruments. Le sens de l'initiative et la créativité sont encouragés.

CONTENU

En rapport avec le contenu des cours de mécanique et de physique des sections concernées.

En rapport avec certains enseignements de base dispensés par les départements concernés.

FORME DE L'ENSEIGNEMENT : En laboratoire à raison de 4h, toutes les 2 semaines

DOCUMENTATION : Notes polycopiées, bibliothèque spécialisée à disposition.

LIAISON AVEC D'AUTRES COURS Cours de mathématique, de mécanique générale et de physique générale.

Préalable requis :
Préparation pour :
OBJECTIFS

Comprendre et savoir interpréter les structures fonctionnelles et les principaux mécanismes d’action biochimiques des cellules en générale et de la cellule microbienne en particulier.

CONTENU

La cellule en générale
Constituants principaux
Pluralisation et différenciation cellulaire

Métabolisme de la cellule eucaryote
Réactions enzymatiques et énergétiques
Réactions physico-chimiques

Ultrastructure fonctionnelle des cellules eucaryotes
Plasmalemme - Membranes - Appareils de Golgi et vacuolaire
Chloroplastes et mitochondries

La cellule procaryote
Constituants majeurs
Structure et organisation fonctionnelle

Métabolisme énergétique de la cellule procaryote
Transports membranaires
Glycolyse - Fermentations - Respirations
Types trophiques

Croissance et techniques de culture microbiennes
Lois élémentaires de la croissance microbienne
Cultures discontinues, semi-continues et continues

FORME DE L’ENSEIGNEMENT: Ex cathédra

DOCUMENTATION: notes polycopiées

LIAISON AVEC D'AUTRES COURS: Introduction à la biotechnologie, Génie biologique,
Valorisation et élimination biologique des déchets, Traitement des déchets
Préalable requis:
Préparation pour:
OBJECTIFS
Introduction à l'hydrodynamique des liquides parfaits et réels.

CONTENU
INTRODUCTION : généralités, lois de conservation, unités de mesure, propriétés.

CINEMATIQUE : définition, trois mouvements fondamentaux, équations de continuité, écoulements irrotationnels ou potentiels.

HYDROSTATIQUE : pression en un point, équations de l'hydrostatique, variation verticale de la pression, mesure de pression, forces hydrostatiques sur des parois, forces hydrostatiques sur des corps immergés, hydrostatique dans d'autres champs de force, exercices.

HYDRODYNAMIQUE DES LIQUIDES PARFAITS : équations de l'hydrodynamique, équations de continuité, équations intrinsèques, équation de Bernoulli, équation de l'énergie, équation de la quantité de mouvement, concept du volume de contrôle, mesure de vitesse, mesure de débit, quelques applications (formule de Torricelli, phénomène de Venturi, écoulement à vortex, écoulement non permanent, changement de direction, changement de section), exercices.

HYDRODYNAMIQUE DES LIQUIDES REELS : équations de l'hydrodynamique pour écoulement laminaire, quelques écoulements laminaires (écoulement dans une conduite cylindrique, écoulement entre deux plaques parallèles, écoulement rampant), expérience de Reynolds, turbulence, équations de l'hydrodynamique pour écoulement turbulent, répartition de vitesse, similitude, exercices.

COUCHE LIMITE : généralités, épaisseur, couche laminaire, couche limite turbulente.

FORME DE L'ENSEIGNEMENT : Cours ex cathedra avec polycopiés

DOCUMENTATION : Polycopiés et livres de référence

LIAISON AVEC D'AUTRES COURS
Préalable requis : Physique, Mécanique
Préparation pour : Constructions hydrauliques
Titre: HYDROLOGIE I

Enseignant: MUSY André, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>3</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître et comprendre les principales composantes du cycle de l'eau, leur mesure et leurs interactions et savoir analyser et traiter les données acquises en vue de leur utilisation pour les besoins du Génie rural et de l'environnement.

CONTENU

Le cycle de l'eau et son importance
Le bilan hydrologique
Le bassin versant et sa réaction
Les composantes du bilan - type, nature et technique de mesure
Les réseaux d'observation et le traitement primaire des données
Le comportement hydrologique d'un système - fonction de production - fonction de transfert
Les ressources en eau et leur évaluation

FORME DE L'ENSEIGNEMENT: Ex cathédra et démonstration

DOCUMENTATION: notes polycopiées, documents annexes

LIAISON AVEC D'AUTRES COURS: Hydrologie II et III, Génie rural et sciences de l'environnement
Titre: PÉDOLOGIE I

Enseignant: J.C. VEDY, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 45</th>
<th>Par semaine: Cours 2</th>
<th>Exercices Pratique 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s) Semestre Oblig. Facult. Option</td>
<td>Branches Théoriques Pratiques</td>
<td></td>
</tr>
<tr>
<td>GREM 3</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Les constituants du sol: nature et genèse, propriétés fonctionnelles

CONTENU

Approche visuelle et tactile de l'écosystème sol-végétation
Nature des constituants du sol: minéraux argileux, fer et aluminium, substances humiques, solution du sol, atmosphère du sol
Genèse des constituants du sol: argilogenèse, biochimie de l'humification
Propriétés fonctionnelles: pH et pouvoir tampon, complexe d'échange cationique, texture et analyse granulométrique, structure et microstructure

FORME DE L'ENSEIGNEMENT: Cours ex cathédra; travaux de laboratoire, tournées de terrain.

DOCUMENTATION: cours polycopiés, documents annexes

liaison avec d'autres cours:
Préalable requis : géologie, chimie
Préparation pour : pédologie II, gestion et conservation des sols, pédologie III, végétation I,
diverses formations GR, GE
Titre : MECANIQUE DES CONSTRUCTIONS I

Enseignant : Léopold PFLUG, professeur DGC/EPFL

<table>
<thead>
<tr>
<th>Heures totales : 45</th>
<th>Par semaine :</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG.................</td>
<td>3</td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td>..................</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..................</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..................</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Appliquer les connaissances de la mécanique à la détermination du comportement des éléments d'une construction et celles des matériaux pour leur dimensionnement.

Le cours "mécanique des constructions" comporte deux volets :

I. Statique : analyser l'équilibre des solides et des efforts intérieurs dans ceux-ci.

II. Résistance des matériaux : Étudier le comportement des éléments de construction sous charge, leur résistance, leur stabilité et leur déformation.

CONTENU

I. Statique :

- Introduction à la mécanique des constructions, historique.

- Équilibre des forces et des solides, efforts intérieurs dans un solide, ligne d'influence des systèmes isostatiques, systèmes réticulés.

FORME DE L'ENSEIGNEMENT : Ex cathedra. Exercices en salle.

DOCUMENTATION : Résumé du cours par fascicules polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Analyse, algèbre linéaire, mécanique, géométrie descriptive.

Préparation pour : Béton armé, constructions métalliques et bois.
Titre: FORMATION PROFESSIONNELLE COMPLEMENTAIRE I

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total</th>
<th>Par semaine</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>3</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Savoir établir correctement le coût de réalisation et d'exploitation d'un équipement technique et savoir comparer divers projets entre eux au plan financier.

CONTENU

- Bases des mathématiques financières
- Modes d'amortissement d'un investissement
- Analyse financière
- Comparaison financière de projets entre eux
- Notions de l'analyse coût/avantage

FORME DE L'ENSEIGNEMENT: Cours, exercices en classe, séminaires, projet

DOCUMENTATION: "Introduction aux calculs économiques pour les ingénieurs", Maystre, PPR

LIAISON AVEC D'AUTRES COURS: --

Préparation pour: Génie sanitaire I GR6
Titre: TOPOGRAPHIE III

Enseignant: Pierre HOWALD, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total :</th>
<th>30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td></td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>3</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables de:

- faire des mesures avec des instruments topographiques.
- exécuter les calculs liés aux méthodes topométriques.
- élaborer un dossier de mesures, calculs et documents, propre et bien ordonné.
- préparer et organiser l'exécution d'un travail, analyser et qualifier les résultats.

CONTENU

9. Levé de plans topographiques, de profils.

10. Implantations: calcul et piqûtage d'alignements, de cercle, de clothoides.

11. Connaissance et emploi d'équipements électroniques:
- mesures électroniques des distances
- théodolites et tachéomètres électroniques
- enregistrements des mesures.

FORME DE L'ENSEIGNEMENT: ex cathédra, avec démonstrations.

DOCUMENTATION: cours et textes polycopiés et documentation professionnelle.

LIAISON AVEC D'AUTRES COURS:
- Préalable requis: topographie I et II.
- Préparation pour: topographie IV et toutes les branches des mensurations. Campagnes de terrain.
Titre: THEORIE DES ERREURS I

Enseignant: Pierre HOWALD, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>3</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

À la fin du cours, les étudiants seront capables de:

- appliquer les méthodes classiques de la théorie des erreurs aux opérations et problèmes topographiques courants

CONTENU

- Généralités et définitions des types d'erreurs
- Mesures d'égales et inégales précision - poids
- Observations indépendantes et corrélées
- Propagation des erreurs
- Compensations d'observations directes, d'observations médiates et d'observations conditionnelles.
- Compensation d'un point de triangulation - ellipse d'erreur moyenne
- Compensation de petits réseaux
- Transformation de Helmert

Applications.

FORME DE L'ENSEIGNEMENT:
ex cathédra.

DOCUMENTATION:
textes et fiches polycopiés.

LIAISON AVEC D'AUTRES COURS:
Préalable requis: topographie I et II - analyse I et II - algèbre linéaire I et II.
Préparation pour: topographie III et IV - théorie des erreurs II. Toutes les branches des mensurations. Campagnes de terrain.
Titre : ANALYSE NUMERIQUE

Enseignant : Jean DESCLOUX, professeur

Heures total : 30

Par semaine : cours 2

Exercices 1

Pratiques

<table>
<thead>
<tr>
<th>Destination et contrôle des études :</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sections(s)</td>
<td>Théoriques</td>
</tr>
<tr>
<td>Génie civil</td>
<td>x</td>
</tr>
<tr>
<td>Génie rural</td>
<td>x</td>
</tr>
<tr>
<td>Mécanique</td>
<td>x</td>
</tr>
<tr>
<td>Physique</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Theoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Génie rural</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mécanique</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Physique</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

L'étudiant apprendra à résoudre pratiquement divers problèmes mathématiques susceptibles de se poser aux ingénieurs.

CONTENU

FORME DE L'ENSEIGNEMENT : Ex cathedra et exercices en salle.

DOCUMENTATION :

LIAISON AVEC D'AUTRES COURS : Analyse, Algèbre linéaire, Programmation.

Préalable requis :
Préparation pour :
Titre: PROBABILITÉ ET STATISTIQUE II

Enseignant: S. MORGENTHALER, professeur EPFL

<table>
<thead>
<tr>
<th>Heures totales</th>
<th>44</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>2</th>
<th>Exercices</th>
<th>2</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie Rural et Géomètres...</td>
<td>4e</td>
<td>☑</td>
<td></td>
<td></td>
<td>Théoriques</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratiques</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Montrer le rôle des statistiques dans certaines disciplines du génie rural, telles que: hydrologie, agrométéorologie, pédologie, génie de l'environnement, mensuration, etc.

Application des méthodes de probabilité et statistique I aux problèmes pratiques.

CONTENU

- **Régession**: analyse des résidus, régression linéaire multiple, choix d'un modèle, inférence, diagnostic d'un modèle, méthodes non paramétriques (corrélation de rangs, test des séquences)
- **Analyse de variance**: modèle à un facteur, modèle à deux facteurs avec et sans interactions, modèles factoriels, méthodes non paramétriques (Wilcoxon, test du signe)
- **Méthodes multivariées**: composantes principales, classification (si l'horaire le permet)

FORME DE L'ENSEIGNEMENT:

cours ex cathedra et exercices en classe, applications numériques au moyen de logiciels statistiques (SPSS X)

DOCUMENTATION:

feuilles polycopiés

LIAISON AVEC D'AUTRES COURS

Préalable requis: Probabilité et Statistique I

Préparation pour: Théorie des erreurs II, hydrologie générale
OBJECTIFS

Introduction à l'hydraulique avec ses applications pour l'ingénieur.

CONTENU

THEORIE DES MAQUETTES : généralités, les similitudes, les forces, les nombres sans dimension, nombre de Reynolds, nombre de Froude, utilisation pratique.

ECOULEMENTS EN CHARGE : théorie des pertes de charge en canalisations cylindriques rectilignes - singularités. Calcul des canalisations et réseaux.

ECOULEMENTS EN NAPPE LIBRE : lois de pertes de charge, écoulements uniformes, énergie et force d'un écoulement, écoulements variés et graduellement variés.

HYDRAULIQUE FLUVIALE : généralités, canaux en régime, cours d'eau en régime : transports solides, charriage et suspension.

FORCE HYDRODYNAMIQUE : généralités, théorie, coefficient de trainée, vitesse de chute.

FORME DE L'ENSEIGNEMENT : Cours ex cathedra avec polycopiés.

DOCUMENTATION : Livres de référence et table des matière recommandés

LIAISON AVEC D'AUTRES COURS

Préalable requis : Physique, Mécanique
Préparation pour : Constructions hydrauliques / Hydraulique agricole / Hydrologie
Titre: PHYSIQUE DU SOL

Enseignant: MUSY André, professeur EPFL

Heures total : 30 Par semaine: Cours 2 Exercices 1 Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître et comprendre le comportement du sol, de l'eau et des solutés qu'il détient en liaison avec ses caractéristiques, ses constituants, ses états, son utilisation et son occupation

CONTENU

- Les éléments du milieu - eau - sol - plante
- La phase solide (rappel)
- La phase liquide - état et mouvement de l'eau en milieu variablément saturé
- La phase gazeuse
- Les mouvements associés (solutés, chaleur)
- Comportement physique et hydrodynamique des sols cultivés ou non
- Les bilans hydriques et énergétiques du sol

FORME DE L'ENSEIGNEMENT: Ex cathédra; exercices et laboratoire

DOCUMENTATION: cours polycopiés, documents annexes

LIAISON AVEC D'AUTRES COURS: Pédologie I, Physique générale, Hydraulique, Hydraulique agricole, Génie rural et Sciences de l'Environnement
Titre: **PEDOLOGIE II**

Enseignant: J.C. VEDY, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices</th>
<th>Pratique 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREM</td>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

OBJECTIFS

Genèse et fonctionnement des principales couvertures pédologiques

CONTENU

Les facteurs de la pédogenèse
Les grands processus de la pédogenèse
Les fluvisols, les sols calcimagnésiques, les brunisols, les luvisols, les sols hydromorphes et les histosols

FORME DE L'ENSEIGNEMENT: Cours ex cathédra; travaux de laboratoire, tournées de terrain.

DOCUMENTATION: cours polycopiés, documents annexes

LIAISON AVEC D'AUTRES COURS:
Préalable requis: géologie, chimie, pédologie I
Préparation pour: gestion et conservation des sols, pédologie III, végétation I, diverses formations GR et GE,
OBJECTIFS

Appliquer les connaissances de la mécanique à la détermination du comportement des éléments d'une construction et celles des matériaux pour leur dimensionnement.

Le cours "mécanique des constructions" comporte deux volets :

I Statique : analyser l'équilibre des solides et des efforts intérieurs dans ceux-ci.

II Résistance des matériaux : étudier le comportement des éléments de construction sous charge, leur résistance, leur stabilité et leur déformation.

CONTENU

II Résistance des matériaux :
- Caractéristiques géométriques des surfaces, propriétés élastiques des matériaux, états des contraintes.
- Traction et compression, cisaillement, torsion, flexion.
- Instabilité et déformations.
- Systèmes hyperstatiques.

FORME DE L'ENSEIGNEMENT : Ex cathédra. Exercices en salle.

DOCUMENTATION : Résumé du cours par fascicules polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Mécanique des constructions I.
Préparation pour : Béton armé, constructions métalliques et bois.
Titre: Formation professionnelle complémentaire II

Enseignant: Maystre Lucien Yves, prof. EPFL + conférenciers

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices</th>
<th>Pratique 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>4</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Mettre les étudiants en contact avec divers aspects de la profession d'ingénieur en ce qui concerne l'organisation d'études et de travaux

CONTENU

- Les relations de l'ingénieur avec ses partenaires professionnels
- Planification et organisation des études
- Planification et organisation de travaux
- Structure et formation des prix
- Le bureau d'ingénieur
- Travaux à l'étranger, dans les pays en voie de développement
- Autres thèmes, selon les circonstances

FORME DE L'ENSEIGNEMENT: Sujets traités par différents conférenciers, séminaires

DOCUMENTATION: articles et documentation

LIAISON AVEC D'AUTRES COURS: --
- Préalable requis: Formation professionnelle complémentaire I
- Préparation pour: Projets de 4ème année
Titre: SYSTÈME D'INFORMATION GÉOGRAPHIQUE I

Enseignant: CALOZ Régis, chargé de cours DGRG

<table>
<thead>
<tr>
<th>Heures total :</th>
<th>20</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
<td>Branches</td>
</tr>
<tr>
<td>GRG</td>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Rendre l'étudiant capable :
- d'identifier les composantes d'un SIG orienté vers les besoins de l'ingénieur
- d'évaluer la problématique de chacune d'elles
- de concevoir un SIG et d'évaluer les conditions de réalisation
- d'exploiter des images satellite pour, notamment, la détermination de l'occupation du sol.

CONTENU

Principe d'un SIG
Base de données cartographiques
Base de donnée numérique
Acquisition, validation, prétraitement des données

FORME DE L'ENSEIGNEMENT: Ex cathédra; discussion et démonstration

DOCUMENTATION: notes polycopiées

LIAISON AVEC D'AUTRES COURS: SIG II, SIT I, Infographie, Banque de données Hydrologie
OBJECTIFS

Introduire les étudiants dans les divers domaines d'application de la biotechnologie en leur montrant, par de nombreux exemples concrets, l'importance de cette science de l'ingénieur dans la gestion de l'Environnement et dans la production industrielle.

CONTENU

Définition, historique et situation actuelle de la biotechnologie

Principes de base de la bioingénierie

Exemples d'application du génie biologique

Biotechnologie industrielle - Production de biens
 Alimentation humaine
 Agriculture et lutte biologique
 Chimie et biochimie
 Santé et pharmacie

Biotechnologie environnementale - Production de services
 Epuration des eaux résiduaires et des effluents industriels
 Elimination des déchets solides en décharge contrôlée
 Valorisation agricole, alimentaire et énergétique des déchets organiques
 Biodégradation des substances polluantes et xénobiotiques
 Bioaccumulation et biolixiviation des métaux
 Corrosions bactériennes

FORME DE L'ENSEIGNEMENT: Ex cathédra

DOCUMENTATION: notes polycopiées

LIAISON AVEC D'AUTRES COURS: Biologie générale, Génie biologique, Valorisation et élimination biologique des déchets, Traitement des déchets

Préalable requis:
Préparation pour:
Titre: ECOLOGIE I

Enseignant: TARRADELLAS Joseph, professeur

<table>
<thead>
<tr>
<th>Heures total :</th>
<th>20</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
<td>Branches</td>
</tr>
<tr>
<td>GRG</td>
<td>4</td>
<td>×</td>
<td></td>
<td></td>
<td>Théoriques</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables:
1. de comprendre la circulation de l'énergie et la matière dans les écosystèmes terrestres et son impact sur les pratiques agricoles

CONTENU

- Notions de biosphère, de milieu, d'écosystème, de biotope et de biocénose. Principaux facteurs abiotiques et biotiques. Étude de la biosphère, définition, structure, génèse de la vie sur la terre. État actuel de biosphère, évolution démographique, catastrophes naturelles.
- Les cycles biogéochimiques: les éléments biogènes, les catégories trophiques, autotrophes, hétérotrophes, consommateurs et décomposeurs.

FORME DE L'ENSEIGNEMENT: Ex cathédra et visite sur le terrain

DOCUMENTATION: graphiques et tableaux polycopiés

LIAISON AVEC D'AUTRES COURS: -Biologie, -Milieu naturel I et II, -Ecologie II, -Gestion et conservation des sols, -Qualité des eaux et écotoxicologie I, II et III.
Titre: ASSAINISSEMENT DES AGGLOMERATIONS I

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

Heures total : 20 Par semaine: Cours | Exercices | Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>4</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

OBJECTIFS

Connaître et savoir appliquer les connaissances d'hydraulique, d'hydrologie et d'assainissement au calcul des collecteurs d'un réseau d'égouts.

CONTENU

- Introduction au génie sanitaire
- Qualité et quantité des eaux d'approvisionnement des eaux usées et météoriques
- Systèmes d'assainissement (tout-à-l'égout, unitaire, séparatif)
- Bases de dimensionnement
- Hydrologie urbaine

FORME DE L'ENSEIGNEMENT: Cours illustré d'exercices faits en classe

DOCUMENTATION: fiches polycopiées, "Les réseaux d'assainissement", Bourrier TEC DOC

LIAISON AVEC D'AUTRES COURS: --

Préalable requis: - Hydraulique II GR4, -Hydrologie I GR3
Préparation pour: - Assainissement des agglomérations II GR5, -Génie sanitaire I GR 6,
- Traitement des déchets I, GR6
OBJECTIFS

A la fin du cours, les étudiants seront capables de:

- faire des mesures avec des instruments topographiques.
- exécuter les calculs liés aux méthodes topométriques.
- élaborer un dossier de mesures, calculs et documents, propre et bien ordonné.
- préparer et organiser l’exécution d’un travail, analyser et qualifier les résultats.

CONTENU

12. Connaissance des équipements et méthodes à mettre en application dans les travaux pratiques.

Travaux pratiques:
- déterminations trigonométriques de points
- levés de détail
- petits réseaux de nivellement
- implantations.

FORME DE L’ENSEIGNEMENT:

ex cathédra, avec démonstrations. Exercices et travaux pratiques sur le terrain et en salle. Travaux de groupes et individuels.

DOCUMENTATION:

cours et textes polycopiés et documentation professionnelle.

LIAISON AVEC D’AUTRES COURS:

Préalable requis: topographie I, II et III - théorie des erreurs I.

Préparation pour: toutes les branches des mensurations. Campagnes de terrain.
Titre: **CAMPAGNE DE TOPOGRAPHIE I**

Enseignant: Pierre HOWALD, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total: 15 jours</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s) Semestre</td>
<td>Oblig. Facult. Option</td>
<td>Branches Théoriques Pratiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRG 4</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin de la campagne, les objectifs formulés pour les cours de Topographie I, II, III et IV seront encore mieux atteints, car les étudiants auront acquis l'expérience d'une activité topographique dans les conditions réelles de la pratique, ainsi que le sens du terrain.

CONTENU

Sur un site approprié, chaque groupe de deux ou trois étudiants exécute un levé topographique d'une zone de quelques hectares. Le travail, complet pour chaque groupe, comporte la reconnaissance, l'implantation et la détermination des points de base, puis le levé de détail et l'établissement du plan.

FORME DE L'ENSEIGNEMENT: deux semaines après le semestre d'été. Travail pratique de groupe.

DOCUMENTATION: toutes données techniques nécessaires à l'exécution du travail.

LIAISON AVEC D'AUTRES COURS:
- **Préalable requis:** topographie I, II, III et IV - théorie des erreurs I.
- **Préparation pour:** toutes les branches des mensurations. Les autres campagnes de terrain.
OBSERVATIONS

Approfondir les connaissances dans ce domaine pour mieux évaluer au point de vue qualitatif et quantitatif les paramètres utiles au dimensionnement d'ouvrages hydrauliques de Génie rural, compte tenu du nombre et de la nature des informations disponibles.

CONTENU

- Hydrologie et aménagement hydro-agricole - rapport de dépendance, évaluation des risques, choix des paramètres.
- La réponse hydrologique du bassin versant - fonction de production.
- Relation pluie - débit - fonction de transfert.
- Prédétermination des débits de crues - formules empiriques, analyse fréquentielle, méthode du Gradex.
- Modélisation hydrologique - type de modèles, structure, mise en œuvre, application.
- Analyse des étages - prévision et prédétermination, aspects légaux.
- Critère de choix et règle de décision pour le dimensionnement d'ouvrages hydrauliques de Génie rural.

FORME DE L'ENSEIGNEMENT: Ex cathédra et exercices en salle et sur archives

DOCUMENTATION: Cours polycopiés et notes diverses

LIAISON AVEC D'AUTRES COURS: Hydraulique I, Probabilité et statistique,
Aménagements des terres et des eaux,
Travaux pratiques de Génie rural.
OBJECTIFS

Connaître les principes de base régissant la dynamique de l'eau du sol, ses interactions avec le végétal et l'atmosphère ainsi que les fondements scientifiques du contrôle de l'équilibre hydrique d'un sol en fonction de sa vocation et du climat. Savoir déterminer en laboratoire les caractéristiques des eaux et des sols utiles à la conception des ouvrages de Génie rural.

CONTENU

- Besoins, utilisation et gestion de l'eau en milieu rural.

- La circulation naturelle des eaux dans le sol
 - infiltration
 - redistribution
 - percolation, alimentation de base, remontée capillaire.

- Le contrôle des eaux pour l'agriculture.

- Le comportement hydraulique vers les ouvrages de captage
 - régime permanent et variable
 - sols homogène et isotrope / hétérogène et anisotrope
 - puits, fossés, canaux, drains par tuyau.

- Les relations sol - eau - plantes.

FORME DE L'ENSEIGNEMENT: Ex cathédra et séminaires, exercices et laboratoires.

DOCUMENTATION: Cours polycopiées et notes diverses

Titre: AGRONOMIE GENERALE I

Enseignant: CHARLES Jean-Paul, chargé de cours

Heures total : 30 Par semaine: Cours Exercices Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>5</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

					☐	☐
		☐			☐	☐
		☒			☐	☒
					☐	☐

Branches

OBJECTIFS
Acquérir ou compléter les connaissances de base sur la croissance des principaux végétaux cultivés et exploités, leurs besoins, les techniques et pratiques culturelles, les principaux systèmes de production en agriculture.

CONTENU
- Eléments de morphologie et de physiologie végétales
- Croissance et développement des plantes
- Classification des végétaux et principales plantes cultivées
- Principaux facteurs de la production végétale et leurs interactions: sol, climat, nutrition, variétés, techniques culturelles, protection

FORME DE L'ENSEIGNEMENT: ex cathedra

DOCUMENTATION: notes de cours, documents annexes, bibliographie

LIAISON AVEC D'AUTRES COURS: Biologie générale, Biotechnologie, Ecologie, Milieu naturel, Economie rurale, divers cours sur les sciences du sol
Titre : MÉCANIQUE DES SOLS I

Enseignant : Edouard RECORDON, professeur EPFL

Heures total : 30
Par semaine : cours 2
Exercices - Pratiques -

Destinataires et contrôle des Études :
Sections(s) Semestre Oblig. Facult. Option Théoriques Pratiques
GRG 5.... X □ □ □ □ □

Branches

OBJECTIFS
Identifier les divers types de sols et évaluer leurs caractéristiques sur la base d'un examen de chantier. Décrire les difficultés constructives dont ils peuvent être cause. Décrire le comportement des fondations d'ouvrages, des ouvrages de soutènement et de drainage, les travaux de terrassement et les problèmes liés à la stabilité des pentes dans l'optique des questions qui se posent à un ingénieur du génie rural. Faire les calculs qui permettent de chiffrer les ordres de grandeur par des méthodes simples.

CONTENU

Technologie : Nature d'un sol - Les divers types de sols - L'eau dans le terrain - Compactage et force portante - Déformabilité - Résistance au cisaillement - Valeurs des paramètres géotechniques

Fondations : Travaux d'excavation et de remblayage - Fondations superficielles - Fondation des chemins A.F. - Ecrans de soutènement - Stabilité des pentes - Fouilles et canaux de drainage

FORME DE L'ENSEIGNEMENT :
Ex cathedra avec exemples numériques, traités en classe pour l'essentiel, illustrant les sujets principaux, et démonstrations en laboratoire

DOCUMENTATION :
Cours polycopié de technologie des sols (GC) et de géotechnique et fondations (GR)

LIAISON AVEC D'AUTRES COURS :
Préalable requis : Géologie, résistance des matériaux, hydraulique
Préparation pour : Voies de circulation, construction, aménagements agricoles et des eaux et génie rural
OBJECTIFS

L'étudiant doit être capable de calculer des éléments de structures simples et courantes des bâtiments et du génie civil, et de choisir les matériaux de construction en fonction des conditions locales.

CONTENU

Modélisation d'une structure et systèmes porteurs

Conception de la sécurité et actions à considérer

Matériaux et technologies (notions de base)

Construction métallique (applications pratiques)

Construction en bois
- Dimensionnement des sections
- Assemblages
- Eléments structuraux et charpentes simples

Initiation à la construction en béton armé

FORME DE L'ENSEIGNEMENT : Cours ex cathedra; exercices en salle.

DOCUMENTATION : Polycopiés; documentation professionnelle.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Mécanique de la construction I et II
Préparation pour : Construction II
Titre: SYSTÈME D'INFORMATION GÉOGRAPHIQUE II

Enseignant:
CALOZ Régis, chargé de cours DGRG

Heures total: 20 Par semaine: Cours 2 Exercices Pratique 5

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>5</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Rendre l'étudiant capable :
- d'identifier les composantes d'un SIG orienté vers les besoins de l'ingénieur
- d'évaluer la problématique de chacune d'elles
- de concevoir un SIG et d'évaluer les conditions de réalisation
- d'exploiter des images satellite pour, notamment, la détermination de l'occupation du sol.

CONTENU

Introduction à la télédétection
Modèle numérique d'altitude
Exploitation des données du SIG (traitements des données, traitements d'image)
Problèmes de couplages avec des modèles de simulation

FORME DE L'ENSEIGNEMENT:
Ex cathédra; discussion et démonstration

DOCUMENTATION:
notes polycopiées

LIAISON AVEC D'AUTRES COURS:
SIT I, Infographie, Banque de données Hydrologie
OBJECTIFS
- Connaissance des notions fondamentales en droit en général et en droit privé en particulier.
- Maîtrise de l'accès à la documentation essentielle.
- Approfondissement par des exercices pratiques.
- Sensibilisation à des problèmes concrets liés à l'exercice de la profession.

CONTENU
1. Introduction générale au droit
La notion de droit - les sources du droit.

2. Introduction au droit privé
- Notions générales de droit privé.
- Introduction aux droits réels.
- Aperçu du droit de la famille, du mariage et des successions.
- Introduction au droit des personnes morales, des sociétés et du consortium.
- Introduction au droit des obligations et des contrats.
- Le contrat d'entreprise et le contrat de mandat.
- La responsabilité civile.
- La propriété immatérielle.

FORME DE L'ENSEIGNEMENT : Ex cathedra, avec exercices pratiques et discussion.

DOCUMENTATION : Code civil et Code des obligations; normes SIA 102, 103, 118; support du cours.

LIAISON AVEC D'AUTRES COURS
Préalable requis :
Préparation pour :
Titre : DROIT II

Enseignant : N. Michel, professeur invité

<table>
<thead>
<tr>
<th>Heures totales : 25</th>
<th>Par semaine :</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie rural</td>
<td>5, 6</td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

- Connaissance des notions fondamentales en droit public.
- Maîtrise de l'accès à la documentation essentielle.
- Approfondissement par des exercices pratiques.
- Sensibilisation à des problèmes concrets liés aux rapports avec les autorités de l'Etat.

CONTENU

- Introduction générale au droit public.
- Les principes de l'activité administrative.
- La notion de l'acte administratif.
- L'aménagement du territoire et la police des constructions.
- La protection de l'environnement.
- La police des constructions.
- L'expropriation.
- L'énergie et les voies de communication.
- La juridiction administrative.

FORME DE L'ENSEIGNEMENT : Ex cathedra, avec exemples pratiques et discussion.

DOCUMENTATION : Extraits du Recueil systématique du droit fédéral, support du cours.

LIAISON AVEC D'AUTRES COURS

Préalable requis :
Préparation pour :
Titre: HTZ/ECONOMIE RURALE I

Enseignant: VALLAT Jean, professeur EPFZ

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>5</td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
</tbody>
</table>

Heures total : 30 Par semaine: Cours 2 Exercices Pratique

OBJECTIFS

Connaissance de l'agriculture suisse
Introduction à la gestion de l'exploitation agricole
Développement du monde rural
Compréhension du monde rural

CONTENU

Les zones rurales de Suisse
Les problèmes de l'agriculture suisse
Les objectifs de l'exploitation agricole
Les mécanismes de l'économie d'entreprise, leur adaptation aux besoins particuliers de l'exploitation agricole
Analyse de l'exploitation agricole
Aperçu sur les diverses cultures et productions animales
Calcul budgétaire et élaboration d'un plan de financement
Expérience de développement régional en Suisse et dans le Tiers-Monde (Suivant le temps disponible et le désir des étudiants),
Visites d'exploitations agricoles de types divers, de la plaine à la montagne

FORME DE L'ENSEIGNEMENT: Ex cathédra, exercices.

DOCUMENTATION: quelques polycopiés

LIAISON AVEC D'AUTRES COURS : Economie rurale II
OBJECTIFS
A la fin du cours, les étudiants seront capables:
- de prévoir les formes d'aménagements des écosystèmes terrestres qui en préservent la richesse écologique.

CONTENU

Développement et évolution des écosystèmes. Notion de succession. Importance du concept d'écotone.

FORME DE L'ENSEIGNEMENT: Ex cathédra; exercices sur des études de cas

DOCUMENTATION: graphiques et tableaux polycopiés

LIAISON AVEC D'AUTRES COURS: -Biologie, -Milieu naturel I et II, -Ecologie I, -Gestion et conservation des sols, -Qualité des eaux et écotoxicologie I, II et III
Titre: ASSAINISSEMENT DES AGGLOMERATIONS. II

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 45</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître et savoir appliquer les connaissances d'hydraulique, d'hydrologie et d'assainissement au calcul des collecteurs d'un réseau d'égouts.

CONTENU

- Hydraulique urbaine
- La formule rationnelle et ses applications
- Autres formules d'hydrologie pour zones suburbaines
- Rétentions à la source et maîtrise des coefficients de ruissellement.
- Bilans polluants et analyse coût-avantage
- Ouvrages spéciaux d'un réseau d'assainissement
- Instruments de mesure et de prélèvements

FORME DE L'ENSEIGNEMENT: Cours illustré d'exercices faits en classe, projet, visites, travaux pratiques

DOCUMENTATION: fiches polycopiées, "Les réseaux d'assainissement", Bourrier TEC DOC

LIAISON AVEC D'AUTRES COURS: --

Préalable requis: -Hydraulique II (GR4), - Hydrologie I (GR3), -Assainissement des agglomérations I (GR4)

Préparation pour: -Génie sanitaire I (GR6), -Traitement des déchets I (GR6)
OBJECTIFS

A la fin du cours, les étudiants seront capables:
- de comprendre les bases de chimie et de biocéologie des eaux usées et naturelles

CONTENU

Critères de qualité chimique et bactériologique des eaux naturelles et de boisson. Normes de rejet d'eaux usées dans les eaux naturelles.

FORME DE L'ENSEIGNEMENT: Ex cathédra;

DOCUMENTATION: cours polycopiés

LIAISON AVEC D'AUTRES COURS: -Biologie, -Milieu naturel I et II, -Ecologie I et II, -Qualité des eaux et écotoxicologie II et III
Titre: APPROVISIONNEMENT EN EAU POTABLE (option environnement)

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

Heures total : 30 Par semaine: Cours 1 Exercices 1 Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Savoir calculer un petit réseau de distribution d'eau potable (ramifié et maillé) et savoir esquisser un système complet d'alimentation en eau potable en milieu rural.

CONTENU

- Caractéristiques des eaux de consommation
- Captage des eaux destinées à la consommation et protection des ressources
- Types de traitement
- La filtration lente
- La filtration rapide
- Calcul d'une adduction et d'un réservoir principal
- Le réseau maillé
- Le réseau ramifié

FORME DE L'ENSEIGNEMENT: Cours et exercices en classe, séminaires, visites

DOCUMENTATION: Polycopié, normes techniques

LIAISON AVEC D'AUTRES COURS:
- Préalable requis: Assainissement des agglomérations I (GR4), -Hydraulique II (GR4)
- Préparation pour: - Construction des ouvrages de génie sanitaire (GR8)
<table>
<thead>
<tr>
<th>Titre: GENIE MICROBIOLOGIQUE (option environnement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: PERINGER Paul, prof. EPFL</td>
</tr>
<tr>
<td>Heures total : 60</td>
</tr>
<tr>
<td>Section(s)</td>
</tr>
<tr>
<td>GRG</td>
</tr>
</tbody>
</table>

OBJECTIFS

Acquisition des techniques microbiologiques et biochimiques de base appliquées dans la pratique pour la biodégradation et la bioconversion des déchets organiques.

CONTENU

Biosystèmes - Bioréacteurs - Procédés microbiologiques
Quantification des biosystèmes - Mesure des variables détat - Régulations
Transferts de masse et d’énergie - Mesure du KL.a
Techniques microbiologique des base - Isolement et identification des germes
Analyse microbiologique des eaux - Germes totaux - Coliformes
Cinétiques enzymatique - Analyses enzymatiques rapides
Evaluation des cinétiques microbien - Essais de biodégradabilité

FORME DE L’ENSEIGNEMENT: Ex cathédra et travaux pratiques de laboratoire
DOCUMENTATION: notes polycopiées
LIAISON AVEC D’AUTRES COURS: Valorisation des déchets
OBJECTIFS

Mécanismes de dégradation naturelle et/ou anthropique des couvertures pédologiques; prévention des risques; pronostic et méthodes thérapeutiques

CONTENU

L'érosion, la pollution par les métaux lourds, la latérisation, fertilisation azotée et pollution par le nitrate, fertilisation phosphatée et pollution par le phosphore, salinisation et alcalinisation, pollution atmosphérique et perte de vitalité de la forêt, polders et poldérisation, drainage et mise en valeur des histosols

FORME DE L'ENSEIGNEMENT: Cours ex cathédra, travaux de laboratoire, tournées de terrain, projets, conférenciers externes

DOCUMENTATION: cours polycopiés, documents annexes
LIAISON AVEC D'AUTRES COURS:
Préalable requis : géologie, chimie, pédologie I et II
Préparation pour : pédologie III, végétation I, diverses formations GR et GE
OBJECTIFS

Présenter les principes pour restituer l'information métrique des prises de vues aériennes, ce qui permet aux étudiants d'étudier la base de la photogrammétrie, les méthodes de restitution et d'exercer la vision stéréoscopique. À la fin du cours, les étudiants seront capables d'effectuer des restitutions photogrammétriques sur stéréo restitution.

CONTENU

Introduction générale, l'œil humain et la vision stéréoscopique.
Moyens simples pour la restitution de prises de vues.
Formules fondamentales de la photogrammétrie.
Orientation des photographies aériennes dans un stéréo restituteur.
Appareils de restitution.
Orthoprojecteurs.

FORME DE L'ENSEIGNEMENT : Ex cathedra, exercices, travaux pratiques et colloques.

DOCUMENTATION : Cours polycopiés, programmes de calcul documentés (FORTRAN).

liaison avec d'autres cours :

Préalable requis : Géométrie descriptive, algèbre linéaire, statistique.
Préparation pour : Photogrammétrie II, mensuration.
Titre: THÉORIE DES ERREURS II (option mensuration)

Enseignant: Hubert DUPRAZ, chargé de cours

Heures total : 30 Par semaine: Cours 2 Exercices Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>5</td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Application concrète du calcul des probabilités et de la statistique aux problèmes spécifiques de la géodésie et de la mensuration.

CONTENU

- Compléments de calcul matriciel.
- La loi généralisée de propagation des erreurs moyennes.
- Applications de la distribution de Gauss et des distributions dérivées.
- Modèles pour la compensation par le principe des moindres carrés:
 compensation directe
 compensation d'observations médiates
 compensation d'observations conditionnelles
 compensation généralisée: modèle de Gauss-Helmert.
- Le vecteur aléatoire à plusieurs dimensions.
- L'ellipse et l'ellipsoïde de confiance.

Morceaux choisis sur:
- la compensation et l'analyse des réseaux géodésiques
- l'analyse des déformations
- les réseaux libres.

FORME DE L'ENSEIGNEMENT: ex cathedra et séminaires personnels.

DOCUMENTATION: manuel polycopié

LIAISON AVEC D'AUTRES COURS:
Préalable requis : théorie des erreurs I, statistique I, II et statistique appliquée.
Préparation pour :
OBJECTIFS

Apprendre à mettre en place et à utiliser une base de données pour la réalisation d’applications. Acquérir une connaissance suffisante des principes du fonctionnement interne des systèmes de gestion de bases de données (SGBD).

CONTENU

1. **Généralités**
 - Nature et objectifs de l’approche base de données;
 - Architecture d’un système de gestion de bases de données;
 - Cycle de vie d’une base de données.

2. **Conception d’une base de données**
 - Approche entité-association;
 - Règles de vérification et de validation.

3. **Modèle et langages relationnels**
 - Modèle et ses formes normales : méthode(s) de conception;
 - Bases théoriques : algèbre relationnelle;
 - Langages utilisateurs : SQL;
 - Passage de la conception (entité-association) à la mise en œuvre relationnelle.

4. **Systèmes relationnels**
 - Traitement des requêtes utilisateurs;
 - Adaptation et filtrage : les vues externes;
 - Evolution : la gestion du schéma;
 - Stockage des données;
 - Exemples : INGRES, ORACLE.

5. **Fonctions élaborées (survol)**
 - Partage de données et accès concurrents;
 - Confidentialité;
 - Fiabilité.

6. **Au-delà des SGBD courants**
 - Langages de 4e génération;
 - Bases de données réparties;
 - Bases de données orientées objets;
 - Bases d’images;
 - Bases de connaissances.

FORME DE L’ENSEIGNEMENT : Ex cathedra; exercices en classe; travaux pratiques sur ordinateur.

DOCUMENTATION : Pour l’essentiel, voir les ouvrages en bibliothèque.

LIAISON AVEC D’AUTRES COURS

*Préalable requis :
Préparation pour :*
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>5</td>
<td>☒</td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

- comprendre les mécanismes d'un système d'information, en particulier dans le cas d'une application au territoire
- comprendre les contraintes techniques et organisationnelles pour la mise en place d'un SIT
- disposer des connaissances de base pour étudier les moyens techniques et informatiques à mettre en place
- donner les bases pour suivre les évolutions conceptuelles et technologiques dans le domaine.

CONTENU

- étude de la systémique
- principes de base des systèmes d'information et des banques de données
- modèles de banques de données pour les SIT
- gestion, sécurité, intégrité des données; mise à jour
- mensuration officielle et SIT
- étude de cas

FORME DE L'ENSEIGNEMENT: Cours, discussions, démonstrations

DOCUMENTATION: notes de cours

LIAISON AVEC D'AUTRES COURS: SIG, Bases de données, Mensuration officielle
Titre: PEDOLOGIE III

Enseignant: J.C. VEDY, professeur EPFL

Heures total : 20 Par semaine: Cours 1 Exercices Pratique 1

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREM</td>
<td>6</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Techniques d'élaboration et modes d'interprétation des systèmes cartographiques pour les couvertures pédologiques

CONTENU

Bases de la cartographie des sols, les différents types de cartes pédologiques, modes de représentation et utilisations pratiques
Projet de cartographie

FORME DE L'ENSEIGNEMENT: Cours ex cathédra, travaux de laboratoire, tournées de terrain

DOCUMENTATION: cours polycopiés, documents annexes, projets, conférenciers externes

LIAISON AVEC D'AUTRES COURS:
Préalable requis : géologie, chimie, pédologie I et II
Préparation pour : végétation I, diverses formations GR et GE
OBJECTIFS
Acquérir ou compléter les connaissances de base sur la croissance des principaux végétaux cultivés et exploités, leurs besoins, les techniques et pratiques culturales, les principaux systèmes de production en agriculture.

CONTENU
Présentation générale de ces cultures et de leur insertion dans l'exploitation agricole.

FORME DE L'ENSEIGNEMENT: ex cathedra et visites sur le terrain

DOCUMENTATION: notes de cours, documents annexes, bibliographie

LIAISON AVEC D'AUTRES COURS: Ecologie, Milieu naturel, Economie rurale, Sciences du sol, Aménagements
Titre: REMANIEMENT PARCELLAIRE I

<table>
<thead>
<tr>
<th>Enseignant:</th>
<th>SCHNEIDER Jean-Robert, chargé de cours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heures total:</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>6</td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIF

A la fin du cours les étudiants devraient être capables de comprendre le rôle et le déroulement d'un remaniement parcellaire.

CONTENU

Le remaniement parcellaire : organisation, financement et législation
Les syndicats d'améliorations foncières : constitution et organisation
Les travaux collectifs : avant-projet, projet de détail, exécution et entretien
Les travaux géométriques : estimations, étude et calcul des parcelles
L'acquisition du nouvel état et la répartition des frais

FORME DE L'ENSEIGNEMENT:

exposés développant les notes de cours, discussions abordant des questions d'actualité, présentation de quelques réalisations concrètes.

DOCUMENTATION:

notes de cours polycopiées

LIAISON AVEC D'AUTRES COURS:

droit foncier, mensuration cadastrale, aménagement du territoire, hydraulique agricole, routes et chemins ruraux, sociologie rurale et milieu naturel.
Titre : ROUTES ET CHEMINS

Enseignant : R. COTTAZ, professeur DGC

Heures total : 65
Par semaine : cours 2+1 Exercices Pratiques 2

<table>
<thead>
<tr>
<th>Destinataires et contrôle des études :</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sections (s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>Génie rural.............. 6.</td>
<td>x</td>
</tr>
<tr>
<td>et géomètres............ et 7 (90/91)</td>
<td>x</td>
</tr>
</tbody>
</table>

OBJECTIFS
L'étudiant devra être en mesure d'établir de façon indépendante un projet de route ou de chemin de desserte rurale dans le cadre d'aménagements ruraux.

CONTENU
- Caractéristiques géométriques et dynamiques des véhicules
- Classification de la desserte rurale, sécurité du trafic
- Etude des éléments géométriques du tracé
- Principes généraux de l'élaboration des projets
- Travaux d'infrastructure, mouvements de terres, évacuation et traitement des eaux superficielles
- Conception de la superstructure, dimensionnement
- Matériaux de construction et éléments constructifs

FORME DE L'ENSEIGNEMENT : Ex cathédra, avec exercices en salle

DOCUMENTATION : polycopié

liaison avec d'autres cours :
Préalable requis : Mécanique des sols I et II - Mécanique générale I et II
Préparation pour : Projet "équipements ruraux"
OBJECTIFS

En fin de semestre, l’étudiant saura concevoir de manière globale un aménagement hydro-agricole spécifique (irrigation, drainage, ouvrage de rétention, lutte anti-érosive notamment) en vue de la mise en valeur des terres agricoles, de leur protection et de leur gestion.

CONTENU

Notion de mise en valeur des terres, schémas directeurs, projets intégrés.

Étude des besoins, évaluation des ressources, critères de décision et principes d’aménagement.

Aménagement spécifiques

- le drainage
- l’irrigation
- la rétention
- les ouvrages de défense contre l’érosion

Aspects généraux, factibilité
présentation d’un projet
devis et principes de financement

Gestion et exploitation des aménagements

Impacts de ce type d’aménagement sur le milieu (aspects socio-économiques et phyto-sanitaires).

FORME DE L’ENSEIGNEMENT: Ex cathédra et exercices.

LIAISON AVEC D’AUTRES COURS: Hydrologie Générale, Aménagement du territoire, Voie de circulation, Physique du sol, Hydraulique générale et agricole, Pédologie I et II, Géotechnique
Titre: MECANIQUE DES SOLS II

Enseignant: Edouard RECORDON, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total:</th>
<th>20</th>
<th>Par semaine:</th>
<th>Exercices</th>
<th>Pratiques 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destinataires et contrôle des études:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRC</td>
<td>6</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Appliquer à l'étude d'un cas concret les notions théoriques acquises au cours du 5e semestre, par un travail personnel, sur le terrain, au laboratoire et en classe. Montrer par la critique de ce travail les limitations des méthodes de calcul, les incertitudes liées à la nature des sols et aux conditions d'hydraulique souterraine et d'hydrologie.

CONTENU

Technologie: Nature d'un sol - Les divers types de sols - L'eau dans le terrain - Compactage et force portante - Déformabilité - Résistance au cisaillement - Valeurs des paramètres géotechniques

Fondations: Travaux d'excavation et de remblayage - Fondations superficielles - Fondation des chemins A.F. - Écrans de soutènement - Stabilité des pentes - Fouilles et canaux de drainage

FORME DE L'ENSEIGNEMENT : Travail par groupes se déroulant sur le terrain, en laboratoire ou en classe sous forme d'exercices ou de séminaires

DOCUMENTATION : Cours polycopiés de Technologie des sols (GC) et de Géotechnique et Fondations (GR)

LIAISON AVEC D'AUTRES COURS : Préalable requis: Géologie, Résistance des matériaux, Hydraulique
Préparation pour: Voies de circulation, Construction, Aménagements agricoles et des eaux et Génie rural
OBJECTIFS

Une grande partie des matériaux de construction sont fabriqués ou mis en place sur le chantier. L'étudiant sera capable de composer et de surveiller la fabrication de matériaux à base de liants hydrauliques. D'autre part, il doit connaître les principes technologiques des autres matériaux de construction importants.

CONTENU

Quelques aspects, spécialement importants pour le génie rural, seront traités. Le cours est subdivisé en quatre chapitres principaux :

1. Technologie et propriétés du béton
2. Autres matériaux du génie rural (briques, bois, ...)
3. Durabilité des matériaux de construction
4. Protection et étanchéité des constructions (matériaux bitumineux, résines, ...)

FORME DE L'ENSEIGNEMENT : Ex cathedra

DOCUMENTATION : Feuilles polycopiées

liaison avec d'autres cours :
Préalable requis : Matériaux de construction I et travaux pratiques
Préparation pour :
Titre : CONSTRUCTION II

Enseignant : Manfred MIEHLBRADT, chargé de cours DGC / EPFL

Heures totales : 30
Par semaine : Cours 1 Exercices Pratique 2

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie Rural et Géomètre</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

L'étudiant doit être capable de calculer des éléments de structures simples et courantes des bâtiments et du génie civil, et de choisir les matériaux de construction en fonction des conditions locales.

CONTENU

Construction en béton armé
- Technologie
- Dimensionnement des sections
- Détails de construction
- Éléments et structures simples

FORME DE L'ENSEIGNEMENT : Cours ex cathedra; exercices en salle.

DOCUMENTATION : Polycopiés; documentation professionnelle.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Mécanique de la construction I et II, Mécanique des sols I, Construction I
Préparation pour : Construction III
Title: DROIT II

Enseignant: N. Michel, professeur invité

<table>
<thead>
<tr>
<th>Heures totales: 25</th>
<th>Par semaine: Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Destinataires et contrôle des études:

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie rural</td>
<td>5, 6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Théoriques</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratiques</td>
</tr>
</tbody>
</table>

OBJECTIFS
- Connaissance des notions fondamentales en droit public.
- Maîtrise de l'accès à la documentation essentielle.
- Approfondissement par des exercices pratiques.
- Sensibilisation à des problèmes concrets liés aux rapports avec les autorités de l'État.

CONTENU
- Introduction générale au droit public.
- Les principes de l'activité administrative.
- La notion de l'acte administratif.
- L'aménagement du territoire et la police des constructions.
- La protection de l'environnement.
- La police des constructions.
- L'expropriation.
- L'énergie et les voies de communication.
- La juridiction administrative.

FORME DE L'ENSEIGNEMENT: Ex cathedra, avec exemples pratiques et discussion.

DOCUMENTATION: Extraits du Recueil systématique du droit fédéral, support du cours.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour:
Titre: BTS/ECONOMIE RURALE II

Enseignant: VALLAT Jean, professeur EPFZ

| Heures total : 20 | Par semaine: Cours | Exercices | Pratique ?
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre 6</td>
<td>Oblig.</td>
<td>Facult.</td>
</tr>
<tr>
<td>GRG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaissance de l'agriculture suisse
Introduction à la gestion de l'exploitation agricole
Développement du monde rural
Compréhension du monde rural

CONTENU

Les zones rurales de Suisse
Les problèmes de l'agriculture suisse
Les objectifs de l'exploitation agricole
Les mécanismes de l'économie d'entreprise, leur adaptation aux besoins particuliers de l'exploitation agricole
Analyse de l'exploitation agricole
Aperçu sur les diverses cultures et productions animales
Calcul budgétaire et élaboration d'un plan de financement
Expérience de développement régional en Suisse et dans le Tiers-Monde (Suivant le temps disponible et le désir des étudiants)
Visites d'exploitations agricoles de types divers, de la plaine à la montagne

FORME DE L'ENSEIGNEMENT: Ex cathédra, exercices.

DOCUMENTATION: quelques polycopiés

LIAISON AVEC D'AUTRES COURS : Economie rurale I
Titre: PHOTO-INTERPRÉTATION

Enseignant: KÖLBL Otto, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s) Semestre</td>
<td>Oblig. Facult. Option</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRG 6</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Introduction à la technique de la photo-interprétation telle qu'elle s'applique pour les sciences de la terre (foresterie, pédologie, agronomie, etc.). A la fin du cours, l'étudiant sera capable de recourir aux techniques de la photo-interprétation pour les divers travaux en génie rural et environnement.

CONTENU

- Sources de rayonnement électromagnétique.
- Propagation des rayonnements électromagnétiques dans l'espace.
- Capteurs électromagnétiques.
- Utilisation d'un spectralphotomètre.
- Signature spectrale de la végétation.
- Films photographiques.
- Vision stéréoscopique.
- Mesures et cartographie avec photographies aériennes.
- Méthodes de photo-interprétation.
- Elaboration d'une clé d'interprétation.
- Prises de vues et avions photographes.

FORME DE L'ENSEIGNEMENT : Ex cathedra et exercices, avec élaboration d'une clé d'interprétation.

DOCUMENTATION : Cours polycopiés.

LIAISON AVEC D'AUTRES COURS :

- Préalable requis : Physique.
- Préparation pour : Aménagement du territoire, génie rural, génie de l'environnement.
OBTJNIFS
A la fin du cours, les étudiants seront capables:
- d'appliquer les principales méthodes d'analyse chimique et biologique applicables aux eaux usées et naturelles

CONTENU
Echantillonnage des eaux usées et naturelles. Méthodes de prélèvement des invertébrés benthiques.

Toutes ces méthodes seront appliquées à l'étude intégrée d'un secteur de cours d'eau et des rejets qu'il reçoit.

FORME DE L'ENSEIGNEMENT: Pratique du terrain, laboratoire

DOCUMENTATION: cours polycopié et fiches sur les méthodes analytiques.

LIAISON AVEC D'AUTRES COURS: -Biologie, -Milieu naturel I et II, -Qualité des eaux et écotoxicologie I et II
Titre: TRAITEMENT DES DECHETS I (Option environnement)

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>6</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître les processus de traitement physique des eaux usées.
Connaître les ouvrages de traitement d’une station d’épuration
Savoir faire un avant-projet de station d’épuration pour des bâtiments isolés, pour un village, pour une petite ville.

CONTENU

- Description des ouvrages
- Le système ouvert stationnaire de l’épuration
- Décantations
- Filtrations
- STEP d’habitations isolées
- STEP communales de petite taille

FORME DE L’ENSEIGNEMENT: Cours et visites sur le terrain

DOCUMENTATION: fiches polycopiées, documents

LIAISON AVEC D'AUTRES COURS: –

Préalable requis: - Assainissement des agglomérations I et II (GR 4 et 5), Hydraulique II (GR4), Biotechnologie (GR4)
Préparation pour: - Traitement des déchets II (GR7), Génie sanitaire II (GR7)
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>6</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Être initié aux comparaisons de variantes selon un ou plusieurs critères, quantitatifs et qualitatifs

CONTENU

- Le réseau et la centrale
- Optimisations mono- et multicritères
- Les méthodes de surclassement
- Application des méthodes ELECTRE

FORME DE L'ENSEIGNEMENT: Cours

DOCUMENTATION: Fiches polycopiées

LIAISON AVEC D'AUTRES COURS:

Préalable requis: - Formation professionnelle complémentaire I (GR3) - Assainissement des agglomérations I (GR5), - Qualité des eaux I (GR4)

Préparation pour: - Génie sanitaire II et III (GR 7 et 8)
OBJECTIFS

Connaissance de la genèse et du fonctionnement des grandes formations sol-végétation naturelles

CONTENU

Formations naturelles et formations anthropisées, formations naturelles climatiques et formations naturelles stationnelles; les grands systèmes climatiques sol-végétation; les formations spécialisées; l'approche des équilibres sol-végétation au niveau stationnel

FORME DE L'ENSEIGNEMENT: Cours ex cathédra, travaux de laboratoire, tournées de terrain

DOCUMENTATION: cours polycopiés, documents annexes

LIAISON AVEC D'AUTRES COURS:
Préalable requis: géologie, chimie, pédologie I, II et III, gestion et conservation des sols
Préparation pour: végétation II (plan d'étude 90-91), diverses formations GR et GE
OBJECTIFS

Acquérir les bases nécessaires pour traiter les problèmes de pollution de l'air qui se posent à l'ingénieur.

CONTENU

- Le système biosphère, les cycles biogéochimiques, les phénomènes d'enrichissement, de rétroaction, non-linéaires.
- Les échelles d'espace et de temps, le système climatique, le réservoir atmosphère, le temps de résidence, la couche d'ozone, l'effet de serre du CO2.
- Le schéma émission-immission-déposition, les émissions naturelles et anthropiques, les polluants primaires, secondaires, le smog.
- Le niveau des immissions, rural, urbain, court et long terme, les cas de pollution historiques.
- Les dépositions sèches et humides et le transfert dans les écosystèmes.
- Les effets sur la santé, le facteur d'effet, le sens d'une norme.
- Les mesures préventives et les moyens techniques de lutte
- La législation, les ordonnances, les liaisons avec les études d'impacts, le cas des nuisances sonores et des odeurs.
- Les réseaux de mesure et le traitement des données
- Éléments de modélisation de la pollution atmosphérique, modèles intégraux, multi-boîtes et différentiels.

FORME DE L'ENSEIGNEMENT: Ex cathédra; séminaire en groupe, projections de films

DOCUMENTATION: notes de cours

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Milieux naturels I, II, -Ecologie I, II
Préparation pour: Pollution et déposition atmosphérique II, -Végétation I, II, -Gestion du milieu naturel
OBJECTIONS

Introduction à l'application pratique de la photogrammétrie pour des leviers topographiques et pour la mensuration cadastrale, étude de la précision et du rendement de la photogrammétrie, ce qui permet aux étudiants de savoir utiliser les moyens de la photogrammétrie dans la pratique de la mensuration.

CONTENU

Photogrammétrie analytique.
Triangulation aérienne et compensation de bloc.
Chambres de prise de vues.
Analyse de la qualité des photographies aériennes.
Plan de vol.
Précision de la photogrammétrie aérienne.
Application et rendement de la photogrammétrie aérienne en mensuration cadastrale.

FORME DE L'ENSEIGNEMENT : Ex cathedra, exercices en restitution topographique et triangulation aérienne.

DOCUMENTATION : Cours polycopiés, programmes de calcul documentés (FORTRAN).

LIAISON AVEC D'AUTRES COURS :

Préalable requis : Géométrie descriptive, algèbre linéaire, statistique, photogrammétrie I.
Préparation pour : Génie rural, mensuration.
Titre: SYSTÈME D'INFORMATION DU TERRITOIRE II (option mensuration)

Enseignant: MISEREZ Jean-Paul, chargé de cours

<table>
<thead>
<tr>
<th>Heures total: 60</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices 2</th>
<th>Pratique 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRG</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches
Théoriques Pratiques
- ☐
- ☐
- ☐
- ☐
- ☐
- ☐

OBJECTIFS
- comprendre les mécanismes d'un système d'information, en particulier dans le cas d'une application au territoire
- comprendre les contraintes techniques et organisationnelles pour la mise en place d'un SIT
- disposer des connaissances de base pour étudier les moyens techniques et informatiques à mettre en place
- donner les bases pour suivre les évolutions conceptuelles et technologiques dans le domaine.

CONTENU
- étude de la systémique
- principes de base des systèmes d'information et des banques de données
- modèles de banques de données pour les SIT
- gestion, sécurité, intégrité des données; mise à jour
- mensuration officielle et SIT
- étude de cas

FORME DE L'ENSEIGNEMENT: Cours, discussions, démonstrations
DOCUMENTATION: notes de cours
LIAISON AVEC D'AUTRES COURS: SIT I, SIG, Bases de données, Mensuration officielle
Titre: MENSURATION CADASTRALE (option mensuration)

Enseignant: Alphonse MISEREZ, professeur EPFL

Heures total: 30 Par semaine: Cours Exercices 1 Pratique 5

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>6</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables:
- de préparer et d'exécuter les travaux de terrain de la mensuration cadastrale.

CONTENU

Le cadastre suisse: historique, bases légales, organisation, prescriptions techniques, financement.
La triangulation de IVe ordre et sa conservation.
La mensuration parcellaire: acquisition, traitement et représentation des données.
Le plan d'ensemble.
La mise à jour et la rénovation du cadastre.
Le projet REMO (Réforme de la mensuration officielle.)

FORME DE L'ENSEIGNEMENT: ex cathédra; discussion et étude de cas.

DOCUMENTATION: notes polycopiées.

LIAISON AVEC D'AUTRES COURS:
Préalable requis: topographie, photogrammétrie, infographie et dessin technique, théorie des erreurs.
Préparation pour: campagne de mensuration.
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>7</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td>Ancien plan d'étude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Bases de la gestion des sols cultivés

CONTENU

Cartographie génétique et cartographie thématique
méthodes d'évaluation de la valeur agricole des terres
techniques d'optimisation des agrosystèmes
le sol, système épurateur

FORME DE L'ENSEIGNEMENT: Cours ex cathédra; travaux de laboratoire et de terrain.

DOCUMENTATION: cours polycopiés, documents annexes

LIAISON AVEC D'AUTRES COURS:
Préalable requis: géologie, chimie, pédologie I, II
Préparation pour: GR, GE, aménagement et gestion du territoire
Titre: THEORIE DES ERREURS II (option mensuration)

Enseignant: Hubert DUPRAZ, chargé de cours

Heures total : 30 Par semaine: Cours 2 Exercices Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>7</td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

OBJECTIFS

Application concrète du calcul des probabilités et de la statistique aux problèmes spécifiques de la géodésie et de la mensuration.

CONTENU

- Compléments de calcul matriciel.
- La loi généralisée de propagation des erreurs moyennes.
- Applications de la distribution de Gauss et des distributions dérivées.
- Modèles pour la compensation par le principe des moindres carrés:
 - compensation directe
 - compensation d'observations médietés
 - compensation d'observations conditionnelles
 - compensation généralisée: modèle de Gauss-Helmert.
- Le vecteur aléatoire à plusieurs dimensions.
- L'ellipse et l'ellipsoïde de confiance.

Morceaux choisis sur:
- la compensation et l'analyse des réseaux géodésiques
- l'analyse des déformations
- les réseaux libres.

FORME DE L'ENSEIGNEMENT: ex cathedra et séminaires personnels.

DOCUMENTATION: manuel photocopié

LIAISON AVEC D'AUTRES COURS:
Préalable requis : théorie des erreurs I, statistique I; II et statistique appliquée.
Préparation pour :

Titre: PHOTOGRAMMETRIE III (option mensuration)

Enseignant: KÖLBL Otto, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total: 60</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Faculté</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Etude approfondie des méthodes numériques de la photogrammétrie et maîtrise des procédés statistiques y relatifs, ce qui permet aux étudiants de savoir utiliser la photogrammétrie numérique pour les divers travaux d'ingénieur.

CONTENU

A) Statistique appliquée :
 - Relevés spatiaux des échantillons
 - Prédiction et filtrage
 - Problèmes spéciaux de la compensation et leur application

B) Photogrammétrie numérique :
 - Photogrammétrie industrielle et architecturale
 - Modèle digital du terrain
 - Restitution digitale et dessin automatique

C) Réalisation d'un programme de calcul lié à la matière traitée (travail en groupe).

FORME DE L'ENSEIGNEMENT: Ex cathedra, exercices en photogrammétrie analytique et photogrammétrie terrestre et sur l'installation de dessin automatique.

DOCUMENTATION: Cours polycopiés, programmes de calcul documentés (FORTRAN).

LIAISON AVEC D'AUTRES COURS:

Préalable requis: Statistique, théorie des erreurs, photogrammétrie I et II, topographie.
MENSURATION CADAストRALE, mise au net après la campagne

Enseignant: Alphonse MISEREZ, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total: 60</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Exploitation, selon diverses démarches, des mesures effectuées par les étudiants au cours de la campagne de mensuration cadastrale.

CONTENU

Traitement semi-graphique: calcul des points de base, report des levés de détail avec le coordinatographe, dessin du plan, calcul des surfaces.

Traitement numérique: calcul des coordonnées et altitude de tous les points, traitement graphique interactif, édition et préparation du dessin du plan parcellaire et de la topographie.

FORME DE L’ENSEIGNEMENT: travaux pratiques.

DOCUMENTATION: plans modèles, modes d’emploi.

LIAISON AVEC D’AUTRES COURS: topographie I-IV, théorie des erreurs I.

Préalable requis: mensuration cadastrale 5e et 6e semestres et campagne de mensuration cadastrale.

Préparation pour:
Titre: GEODESIE I

Enseignant: Alphonse MISEREZ, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables:

- d’appliquer la trigonométrie sphérique pour la résolution des principaux problèmes de la géodésie géométrique.
- de présenter quelques systèmes de projection cartographique.
- de décrire en détail et d’établir les principales formules du système de projection adopté en Suisse.

CONTENU

Quelques éléments de l’ellipsoïde de révolution. Les coordonnées géographiques et l’élément linéaire. Sections normales et lignes de courbure.

Théorie générale des projections cartographiques. Les déformations et l’indicatrice de Tissot.

Étude du système de projection adopté en Suisse pour les travaux géodésiques.

FORME DE L’ENSEIGNEMENT: ex cathédra.

DOCUMENTATION: cours polycopié.

liaison avec d’autres cours:

Préalable requis: topographie I - IV, théorie des erreurs, mensuration cadastrale.

Préparation pour: géodésie II, astronomie de position I et II.
OBJECTIFS

A la fin du cours, les étudiants seront capables:

- de présenter et d'expliquer quelques méthodes astronomiques simples pour déterminer les coordonnées géographiques d'un lieu ou l'azimut d'une direction.

CONTENU

La sphère céleste, le mouvement diurne et les divers systèmes de coordonnées.

Les différentes définitions du temps et sa mesure.

Détermination de l'azimut d'une direction par observations du soleil.

Détermination de la latitude d'un lieu par des observations méridiennes.

Le problème des longitudes et le principe de la détermination simultanée de la latitude et de la longitude.

FORME DE L'ENSEIGNEMENT: ex cathedra avec présentation d'instruments et de documents.

DOCUMENTATION: cours polycopié.

LIAISON AVEC D'AUTRES COURS:

Préalable requis : topographie I - IV - théorie des erreurs I.

Préparation pour : géodésie I et II - astronomie de position II.
Titre: INFORMATIQUE APPLIQUEE (option mensuration)

Enseignant: François GOLAY, chargé de cours EPFL

<table>
<thead>
<tr>
<th>Heures total: 15</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>7</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Branches
- Théoriques
- Pratiques

OBJECTIFS

A la fin du cours, les étudiants seront capables:
- d'apprécier judicieusement l'influence de l'informatique sur leur future profession.
- d'analyser et de décrire les besoins de l'ingénieur du génie rural et géomètre en matière d'informatique.
- d'effectuer une analyse comparative de divers systèmes informatiques pour la mensuration.

CONTENU

Bref historique, panorama du matériel et des genres de logiciels.
Inventaire des problèmes de traitement numérique des mensurations.
Applications graphiques: composants, formulation du problème, structuré de données et des traitements.

FORME DE L'ENSEIGNEMENT:
Ex cathédra; discussions et études de cas.

DOCUMENTATION:
notes polycopiées.

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Mensuration cadastrale I et II
Préparation pour:
OBJECTIFS

A la fin du cours, les étudiants seront capables:

- d'analyser les différents problèmes d'implantation et de contrôle des grands ouvrages d'art et de proposer une solution en fonction de la précision exigée.

CONTENU

Inventaire et analyse des bases topographiques pour les grands travaux: cartes, plans, repères, profils en long et en travers, relevés spéciaux.

Réseaux de points fixes pour l'implantation et le contrôle des ouvrages: buts, conception, canevas.

Choix des équipements de mesure. Exécution et traitement des mesures. Analyse de la précision et de la fiabilité. Appareils pour visées zénithales ou nadirales, pour alignement et pour la mesure précise des distances.

Travaux souterrains et emploi du gyroscope.

Quelques exemples: tunnels, ponts, barrages, terrains instables.

FORME DE L'ENSEIGNEMENT: ex cathedra.

DOCUMENTATION: cours polycopié.

LIAISON AVEC D'AUTRES COURS:

Préalable requis : topographie I - IV, théorie des erreurs.
Préparation pour :
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>7</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables:

- d'évaluer et de formuler les besoins de leur future profession en matière de gestion de l'information.
- de modéliser et d'implémenter un modèle simple de banque de données (modèle relationnel).
- de concevoir et d'implémenter un modèle simple sur une station graphique interactive.

CONTENU

Systèmes d'information et banques de données: principes généraux.
Modèles de banques de données. Le modèle relationnel.
Démarche de conception d'une banque de données: la méthode MERISE.
Essais sur les logiciels disponibles.

FORME DE L'ENSEIGNEMENT: Ex cathédra; discussions et études de cas; démonstrations.

DOCUMENTATION: notes polycopiées.

LIAISON AVEC D'AUTRES COURS:

Préalable requis : Mensuration cadastrale 1 et 2.
Préparation pour:
Titre: IRRIGATION DES TERRES (option génie rural)

Enseignant: MERMOUD André, chargé de cours

<table>
<thead>
<tr>
<th>Heures total : 45</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices 2</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>7</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Suite à ce cours, l'étudiant saura concevoir et dimensionner un réseau d'irrigation adapté aux conditions climatiques et agro-culturelles à partir de documents de base appropriés.

CONTENU

Conditions hydriques des végétaux en zones climatiques sèches - étude des besoins en eau (rappel).

Evaluation des ressources.

Technologie des ouvrages :

- irrigation par gravité
- irrigation par aspersion
- irrigation localisée.

Conception du réseau d'amenée et de distribution de l'eau, aménagement des prises.

Impact de ce type d'aménagement sur le milieu (aspect socio-économique et phytosanitaire).

Elaboration d'un avant-projet

FORME DE L'ENSEIGNEMENT: Ex cathédra, exercices, travaux pratiques.

DOCUMENTATION: Cours polycopiés, plans types, notes diverses.

LIAISON AVEC D'AUTRES COURS: Hydraulique générale et agricole, hydrologie générale, Pédologie, Aménagement des terres et des eaux, Protection de l'environnement.
Titre: ASSAINISSEMENT DES SOLS (option génie rural)

Enseignant: MUSY André, Professeur EPFL

<table>
<thead>
<tr>
<th>Heures total</th>
<th>45</th>
<th>Par semaine</th>
<th>Cours 1</th>
<th>Exercices 2</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td></td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>7</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Suite à ce cours, l’étudiant saura concevoir et dimensionner un réseau d’assainissement des terres adapté aux conditions climatiques et agro-culturelles, de même qu’un réseau de chemins ruraux utilisés également pour collecter des eaux de surface et pour lutter contre l’érosion.

CONTENU

- Conditions hydriques des végétaux en zone climatique humide.
- Moyens d'intervention pour respecter l'équilibre hydrique des sols - critères de choix.
- Evaluation des débits à évacuer

 - Technologie des ouvrages:
 - drainage par fossés à ciel ouvert
 - drainage par tuyaux enterrés
 - drainage économique (sous-solage, drainage taupe)

- Conception d'un réseau d'évacuation des eaux combiné notamment avec un réseau de chemins, aménagements d'exécutoires et d'émissaires.
- Elaboration d'un avant-projet.

FORME DE L'ENSEIGNEMENT

Ex cathédra, séminaires, travaux pratiques et visites sur le terrain.

DOCUMENTATION

Cours polycopiés, plans types, notes diverses.

LIAISON AVEC D'AUTRES COURS

Protection de l'environnement, Hydraulique générale et agricole, Pédologie, Aménagements des terres et des eaux, Voie de circulation.
Titre: TRAVAUX PRATIQUES DE GENIE RURAL

Enseignant: André MUSY, Alphonse MISEREZ, professeurs EPFL

Heures total: 30 | Par semaine: Cours Exercices Pratique 2

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches Théoriques Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>7</td>
<td>☒</td>
<td></td>
<td></td>
<td>☐ ☐ ☐ ☒</td>
</tr>
</tbody>
</table>

OBJECTIFS

Analyse des résultats de la campagne de génie rural et traitement des mesures effectuées au cours de la campagne de topographie II, en vue de l'établissement de rapports analogues à ceux que présenterait un ingénieur praticien. Elaboration d'un dossier technique.

CONTENU

- Traitement manuel et/ou informatisé des données recueillies.
- Analyse d'échantillons en laboratoire.
- Evaluation et présentation des résultats obtenus.
- Rédaction et élaboration d'un dossier technique critique.

FORME DE L'ENSEIGNEMENT: travaux de laboratoire et en salle.

DOCUMENTATION: guide de laboratoire, plans modèles, modes d'emploi.

liaison avec d'autres cours: hydraulique agricole, aménagement des terres et des eaux, pédologie, hydrologie générale, topographie, théorie des erreurs.
Titre: TELEDETECTION APPLIQUEE (option génie rural)

Enseignant: CALOZ Régis, chargé de cours

<table>
<thead>
<tr>
<th>Heures total :</th>
<th>15</th>
<th>Par semaine :</th>
<th>1</th>
<th>Cours</th>
<th>1</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>GRG</td>
<td>Semestre</td>
<td>7</td>
<td>Oblig.</td>
<td>□</td>
<td>Facult.</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Option</td>
<td>□</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Branches</td>
<td></td>
<td>Theoriques</td>
<td>□</td>
<td>Pratiques</td>
<td>□</td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>

OBJECTIFS

Rendre l'étudiant capable de :

- comprendre les principales applications de la télédétection et de mesurer leur degré d'opérationalité,
- choisir le système le plus adéquat selon les applications désirées,
- décrire les systèmes Landsat et SPOT,
- de formuler les avantages et les limites respectifs du traitement visuel et de la classification assistée par ordinateur.

CONTENU

Pérennité générale des applications de la télédétection
Rappel des bases physiques de la télédétection
Etude des propriétés optiques des objets
Système d'acquisition et de traitement des données
Télédétection par systèmes aéroportés
Télédétection satellitaire
Traitement numérique d'image, classification assistée par ordinateur
Programmes Landsat et SPOT

FORME DE L'ENSEIGNEMENT: Ex cathédra; discussion.

DOCUMENTATION: notes polycopiées

LIAISON AVEC D'AUTRES COURS: Télédétection
OBJECTIFS

Prise de conscience des problèmes et de leur interdépendance.
Acquisition des moyens pour l’esquisse d’une solution concrète.
Etude des problèmes posés à l’autorité communale.

CONTENU

Les plans communaux : définitions
inventaires
principes et conceptions directrices
applications à des cas concrets typiques
le plan directeur communal
le plan des zones

Les plans particuliers : plans d’affectations
plans de quartier
plans spéciaux

Les notions sont abordées en relation avec les études faites à l’échelon régional.

FORME DE L’ENSEIGNEMENT :
Ex cathedra, présentation de cas concrets, esquisses permettant de justifier une proposition sectorielle d’aménagement.

DOCUMENTATION :
Fiches polycopiées, documents officiels.

LIAISON AVEC D’AUTRES COURS :
Préalable requis : Droit III et IV, Economie rurale
Préparation pour : Aménagement du territoire II, Transports
OBJECTIFS

Être capable de concevoir une station d'épuration des eaux usées en milieu rural et de choisir les techniques les mieux appropriées aux conditions locales.

CONTENU

- Procédés mécaniques de traitement des eaux usées
- L'assainissement individuel et décentralisé
- Planification de l'assainissement en milieu rural

FORME DE L'ENSEIGNEMENT: Cours avec exercices en classe, visites techniques

DOCUMENTATION: cours polycopiés, documentation, fiches

LIAISON AVEC D'AUTRES COURS:

Préalable requis: Épuration des eaux usées
Préparation pour: projet protection de l'environnement GR 8 option
Titre: DECHETS SOLIDES (option génie de l'environnement) *

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 15</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>7</td>
<td>☒</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître les caractéristiques des déchets communaux et leurs modes de gestion

CONTENU

Caractéristiques
Entreposage
Collecte et transport
Procédés de traitement
Mise en décharge

FORME DE L'ENSEIGNEMENT: Cours

DOCUMENTATION: fiches polycopiées

liaison avec d'autres cours: --
OBJECTIFS

A la fin du cours les étudiants doivent avoir une compréhension claire des processus biologiques d'élimination et de valorisation des déchets organiques et d'être apte à mettre en œuvre les notions pratiques acquises sur les procédés étudiés.

CONTENU

Procédés biologiques continus
 Biosystèmes à l'état stationnaire
 Cinétiques d'échanges et bilans de matières
 Etude du chémostat

Epuration des eaux résiduaires et des effluents industriels
 Boues activées - Filtres et disques biologiques
 Lits fixes et lits fluidisés - Nitification - Déphosphatation
 Applications à l'industrie chimique et à l'industrie alimentaire

Elimination des déchets organiques solides
 Décharge contrôlée (lessivats, fermentations, production de gaz)
 Digestion aérobie thermophile des boues de STEP

Valorisation des déchets organiques par compostage

Valorisation énergétique et alimentaires des déchets organiques
 Digestion anérobie à la ferme et dans l'industrie (production de méthane)
 Aliments enrichis en protéines

FORME DE L'ENSEIGNEMENT: Ex cathédra, études de cas, exercices

DOCUMENTATION: notes polycopiées

LIAISON AVEC D'AUTRES COURS: Génie biologique, Traitement des déchets

Préalable requis:
 Préparation pour:
Titre: PROJET PROTECTION ENVIRONNEMENT (option génie de l'environnement)

Enseignant: MAYSTRE L.Y., PERINGER P., WASSERFALLEN Ch., professeurs EPFL

Heures total : 80

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branche</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>7 et 8</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

2hiver+

5 été

OBJECTIFS

Apprendre à aborder et à gérer une étude interdisciplinaire relative à la protection de l'environnement

CONTENU

Pratique de la microbiologie des eaux usées et des déchets
Pratique de prélèvements et analyses des eaux
Pratique de la valorisation et de l'élimination finale des déchets
Insertion des mesures de génie sanitaire dans l'aménagement local du territoire

FORME DE L'ENSEIGNEMENT: Visites sur le terrain, travaux pratiques, conférences et séminaires

DOCUMENTATION: fiches polycopiées, documents

LIAISON AVEC D'AUTRES COURS: --

Préalable requis: - Pollution du milieu naturel GR5.- Génie biologique GR6
OBJEETIFS

Disposant des connaissances de base élémentaires en transport et circulation, l'étudiant devra être capable d'identifier quelques unes des principales interactions entre le système des transports, les besoins multiples des usagers, l'aménagement du territoire, les contraintes institutionnelles et environnementales.

CONTENU

- Introduction - le rôle des transports dans les sociétés modernes
- Typologie des transports urbains
- L'offre - structure des réseaux routiers et capacité
- La demande - variations de trafic et trafic de dimensionnement
- Conception et calcul de la capacité de différents types de carrefours
- Aménagements pour les piétons et les deux-roues
- Typologie des mesures de gestion de la circulation
- Modération de la circulation dans les villes, bourgs, villages et quartiers urbains
- Les transports collectifs - aperçu général

FORME DE L'ENSEIGNEMENT : Exposés à l'aide de moyens audio-visuels, études de cas

DOCUMENTATION : Différents fascicules polycopiés

LIAISON AVEC D'AUTRES COURS

Préalable requis : Voie de circulation, Aménagement du territoire.
Préparation pour : Diplôme pratique dans cette branche
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>7</td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

OBJECTIFS

Initier à l'approche sociologique de l'espace rural et aux problèmes de l'environnement

Souligner les enjeux de la prise en compte d'une interaction constante entre la technique, l'économique et le social dans l'intervention de l'ingénieur

Initier aux rudiments de l'investigation sociologique

CONTENU

Présentation de l'émergence de nouvelles problématiques qui concernent l'espace rural et l'environnement

Les responsabilités de l'ingénieur

Techniques d'enquête et méthodes d'investigation sociologiques
Titre: CAMPAGNE DE TOPOGRAPHIE II

<table>
<thead>
<tr>
<th>Enseignant: Alphonse MISEREZ, professeur EPFL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Heures total : 2 sem.</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
<th>40</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>7</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin de la campagne, les étudiants seront capables:

- d'établir un programme de mesures pour résoudre un problème particulier.
- de choisir les méthodes et équipements adéquats.
- de présenter un dossier complet avec rapport.

CONTENU

Avant le 7e semestre, dans une région choisie de cas en cas, les étudiants, répartis en groupes, effectuent un travail complet de mensuration (reconnaissance, triangulation, mesures de longues distances, polygonation, nivellement, levés de détails et de profils, détermination de points d'ajustage pour la photogrammétrie, etc.)

Au cours du 7e semestre, quelques heures sont réservées au traitement des mesures et à la préparation du dossier.

FORME DE L'ENSEIGNEMENT:
travaux pratiques sur le terrain.

DOCUMENTATION:
modes d'emploi, documentation technique.

LIAISON AVEC D'AUTRES COURS:

Préalable requis: tous les cours et exercices obligatoires de mensuration.

Préparation pour: travail de diplôme.
Titre: GEODESIE II (option mensuration)

Enseignant: Alphonse MISEREZ, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total</th>
<th>Par semaine</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables:

- de résoudre les deux problèmes fondamentaux de la géodésie géométrique sur l'ellipsoïde de révolution.
- de décrire et d'analyser l'établissement d'un réseau de triangulation de premier ordre.

CONTENU

Equations des sections normales et des lignes géodésiques sur l'ellipsoïde de révolution. Résolution des deux problèmes fondamentaux de la géodésie géométrique sur l'ellipsoïde de référence.

La déviation relative de la verticale.

Utilisation des satellites artificiels en géodésie. Méthodes de positionnement avec le système GPS.

FORME DE L'ENSEIGNEMENT: ex cathedra - exercices et travaux de séminaires.

DOCUMENTATION: textes et fiches polycopiés.

LIAISON AVEC D'AUTRES COURS:
Préalable requis : topographie I - IV, théorie des erreurs I, géodésie I, astronomie de position I.
Préparation pour : astronomie de position II.
Titre: ASTRONOMIE DE POSITION II (option mensuration)

Enseignant: Alphonse MISEREZ, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total</th>
<th>20</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td></td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GRG</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables:

- de préparer les séances d'observations.
- d'effectuer des observations correctes.
- de traiter leurs mesures avec différents moyens de calculs.

CONTENU

Préparation des séances d'observations: établissement d'un programme de mesure, utilisation des cartes célestes et des catalogues astronomiques, calculs des éphémérides de pointage.

Séances d'observations: utilisation des accessoires spéciaux pour les mesures astronomiques de nuit et les observations du soleil.

Traitement des mesures effectuées avec différents moyens de calcul et évaluation de la précision obtenue.

FORME DE L'ENSEIGNEMENT: préparation et traitement des mesures en salle. Séances d'observations de nuit à l'extérieur.

DOCUMENTATION: fiches polycopiées. Modes d'emploi des instruments.

liaison avec d'autres cours:

préalable requis : topographie I - IV - théorie des erreurs I - astronomie de position I.

préparation pour :
OBJECTIFS

A la fin du cours, les étudiants seront capables:

- d’analyser les différents problèmes d’implantation et de contrôle des grands ouvrages d’art et de proposer une solution en fonction de la précision exigée.

CONTENU

- Techniques et équipements spéciaux: autocollimation; renvoi de trajets lumineux; réticules, mires et cibles spéciales; chariots croisés; interférométrie.

- Exemples et application.

FORME DE L’ENSEIGNEMENT: ex cathedra.

DOCUMENTATION: textes et fiches polycopiés.

LIAISON AVEC D'AUTRES COURS:
Préalable requis : topographie I à IV - théorie des erreurs.
Préparation pour :
Titre: Séminaires / Travaux Pratiques Mensuration (option mensuration)

Enseignant: Alphonse MISEREZ, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine: Cours</th>
<th>Exercices</th>
<th>Pratique 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
</tr>
<tr>
<td>GRG</td>
<td>8</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables:

- d'entreprendre une étude en formulant les problèmes liés aux aspects techniques, économiques et juridiques de travaux de mensuration.

CONTENU

Séminaires.
Recherches et travaux personnels.
Rédaction de rapports et présentation des résultats.
Visites techniques, enquêtes.

FORME DE L'ENSEIGNEMENT:

Séminaires et travaux personnels.

DOCUMENTATION:

Documentation professionnelle.

LIAISON AVEC D'AUTRES COURS:

Préalable requis : topographie I - IV, théorie des erreurs I et II, mensuration technique et industrielle I, mensuration cadastrale.

Préparation pour :
Titre: HYDROLOGIE APPLIQUEE (option génie rural)

Enseignant: JATON Jean-François, chargé de cours

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Approfondir les connaissances dans ce domaine pour mieux évaluer au point de vue qualitatif et quantitatif les paramètres utiles au dimensionnement d'ouvrages hydrauliques de Génie rural, compte tenu du nombre et de la nature des informations disponibles.

CONTENU

- Hydrologie et aménagement hydro-agricole - rapport de dépendance, évaluation des risques, choix des paramètres.
- La réponse hydrologique du bassin versant - fonction de production.
- Relation pluie - débit - fonction de transfert.
- Prédétermination des débits de crues - formules empiriques, analyse fréquentielle, méthode du Gradex.
- Modélisation hydrologique - type de modèles, structure, mise en œuvre, application.
- Analyse des étages - prévision et prédétermination, aspects légaux.
- Critère de choix et règle de décision pour le dimensionnement d'ouvrages hydrauliques de Génie rural.

FORME DE L'ENSEIGNEMENT: Ex cathédra et séminaire. Exercices en salle.

DOCUMENTATION: Cours polycopiés et notes diverses.

LIAISON AVEC D'AUTRES COURS: Hydrologie générale, Statistique, Hydraulique générale et agricole, Aménagements agricoles des terres et des eaux.
Titre: SEMINAIRES ET TRAVAUX PERSONNELS (option génie rural)

Enseignant: MUSY André, Professeur EPFL

<table>
<thead>
<tr>
<th>Heures total: 40</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>8</td>
<td>☒</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Approfondir certaines connaissances dans le domaine du Génie rural en général et plus spécialement en ce qui concerne l'aménagement agricole des terres et des eaux. Recherche personnelle sur un thème précis en vue d'une application spécifique et pouvant être retenu comme sujet d'étude pour le diplôme pratique.

CONTENU

Séminaires sur des sujets variés, par exemple :
- production et utilisation du bio-gaz pour le pompage des eaux d'irrigation,
- énergies renouvelables (solaire et éolienne) combinées avec des aménagements spécifiques,
- hydraulique villageoise et mise en valeur de petits périmètres agricoles,
- aménagements de zones agro-pastorales,
- évaluation des ressources en eau souterraines pour les besoins d'irrigation,
- aménagement de cours d'eau en zone rurale et alpine, aménagement de bassins versants - lutte anti-érosive,
- amélioration et conservation des sols cultivés,
- etc.

Recherche personnelle sur un thème précis.

Visites techniques, étude de cas.

FORME DE L'ENSEIGNEMENT: Séminaires, exercices pratiques et en laboratoire.

DOCUMENTATION: Notes diverses.

liaison avec d'autres cours: Multiple.
Titre: REMANIEMENT PARCELLAIRE III

Enseignant: SCHNEIDER Jean-Robert, chargé de cours

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREM</td>
<td>8</td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Heures total : 20
Par semaine : 2
Cours 1
Exercices 1
Pratique

OBJECTIF

A l'aide d'une application concrète, les étudiants devraient être capables de comprendre pourquoi et comment le remaniement parcellaire est une mesure particulièrement efficace d'aménagement du territoire.

CONTENU

Le remaniement parcellaire comme outil privilégié de l'aménagement du territoire
Le remaniement parcellaire de terrains à bâtir
La péréquation réelle foncière

FORME DE L'ENSEIGNEMENT : exposés développant les notes de cours, discussions abordant des questions d'actualité, présentation de quelques réalisations concrètes, projet de groupe.

DOCUMENTATION : notes de cours polycopiées
donnée du projet

LIAISON AVEC D'AUTRES COURS : aménagement du territoire, droit foncier et mensuration cadastrale

Cours préalable requis : remaniement parcellaire I et II
OBJECTIFS

Prise de conscience des problèmes et de leur interdépendance.
Acquisition des moyens pour l'esquisse d'une solution concrète.
Etude des problèmes posés à l'autorité communale.

CONTENU

Les plans communaux :
- définitions
- inventaires
- principes et conceptions directrices
- applications à des cas concrets typiques
- le plan directeur communal
- le plan des zones

Les plans particuliers :
- plans d'affectations
- plans de quartier
- plans spéciaux

Les notions sont abordées en relation avec les études faites à l'échelon régional.

FORME DE L'ENSEIGNEMENT :

Ex cathedra, présentation de cas concrets, esquisses permettant de justifier une proposition sectorielle d'aménagement.

DOCUMENTATION :

Fiches polycopiées, documents officiels.

LIASION AVEC D'AUTRES COURS :

Préalable requis :
Droit III et IV, Economie rurale

Préparation pour :
Aménagement du territoire II, Transports
Titre: PROTECTION DE LA NATURE ET DU PAYSAGE (Option Génie de l'environnement)

Enseignant: Pierre HUNKELER, chargé de cours

Heures total : 30
Par semaine: Cours 2 Exercices 1 Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Sensibiliser les étudiants aux caractéristiques et à la valeur des milieux naturels, à la prise en compte de ceux-ci lors de la planification d'interventions de toute nature.

CONTENU

Introduction au milieu naturel et au paysage
- écosystèmes, fonctionnement, interdépendances, évolutions
- principes écologiques, dynamique des populations
- méthodes d'études et de relevés.

Relation homme-environnement naturel
- milieux et ressources naturelles, diversité et importance,
- impacts directs et indirects des activités humaines,
- nature, paysage et culture.

Gestion, conservation, protection des milieux naturels
- principes, buts et critères
- base légale
- sources de données
- types de protection
- gestion, reconstitution

Nature et paysage dans la planification
- études de cas, positifs et négatifs
- approche, principes, méthodes et techniques

FORME DE L'ENSEIGNEMENT: Ex cathédra; discussions et études de cas, visites de terrain.

DOCUMENTATION: notes de cours

LIAISON AVEC D'AUTRES COURS: Protection de l'environnement, campagne de génie rural
Titre: PROJET PROTECTION ENVIRONNEMENT (option génie de l'environnement)

Enseignant: MAYSTRE L.Y., PERINGER P., WASSERFALLEN C.J., professeurs EPFL

<table>
<thead>
<tr>
<th>Heures total : 80</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique 2hiver+ 5été</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>7 et 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☒</td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Apprendre à aborder et à gérer une étude interdisciplinaire relative à la protection de l'environnement

CONTENU

Pratique de la microbiologie des eaux usées et des déchets
Pratique de prélèvements et analyses des eaux
Pratique de la valorisation et de l'élimination finale des déchets
Insertion des mesures de génie sanitaire dans l'aménagement local du territoire

FORME DE L'ENSEIGNEMENT: Visites sur le terrain, travaux pratiques, conférences et séminaires

DOCUMENTATION: fiches polycopiées, documents

LIAISON AVEC D'AUTRES COURS:
Préalable requis: -Pollution du milieu naturel GR5,- Génie biologique GR6
Titre: ASSAINISSEMENT REGIONAL

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 10</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section(s) | **Semestre** | **Oblig.** | **Facult.** | **Option** | **Branches** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Savoir analyser une planification régionale d'assainissement

CONTENU

- Bases, contraintes et objectifs de la planification des équipements du génie sanitaire
- Exigences relatives à la santé de l'homme
- Exigences relatives la qualité de l'environnement

FORME DE L'ENSEIGNEMENT: Cours et conférences

DOCUMENTATION: articles

LIAISON AVEC D'AUTRES COURS: --
Titre: ALIMENTATION EN EAU POTABLE

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>8</td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Savoir calculer un petit réseau de distribution d'eau potable (ramifié et maillé) et savoir esquisser un système complet d'alimentation en eau potable en milieu rural.

CONTENU

- Caractéristiques des eaux de consommation
- Captage des eaux destinées à la consommation et protection des ressources
- Types de traitement
- La filtration lente
- La filtration rapide
- Calcul d'une adduction et d'un réservoir principal
- Le réseau maillé
- Le réseau ramifié

FORME DE L'ENSEIGNEMENT: Cours et exercices en classe, séminaires, visites

DOCUMENTATION: Polycopié, normes techniques

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Pollution du milieu naturel GR 5, -Génie biologique GR 6
Titre: RESEAUX D'EGOUTS

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRG</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Savoir proposer et calculer un petit système d'assainissement

CONTENU

- Bases de dimensionnement
- Qualités et quantités des eaux
- Les systèmes d'évacuation
- Hydrologie et hydraulique urbaines
- La méthode rationnelle et ses applications

FORME DE L'ENSEIGNEMENT: Cours et exercices

DOCUMENTATION: articles

LIAISON AVEC D'AUTRES COURS: --

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Disposant des connaissances de base élémentaires en transport et circulation, l'étudiant devra être capable d'identifier quelques unes des principales interactions entre le système des transports, les besoins multiples des usagers, l'aménagement du territoire, les contraintes institutionnelles et environnementales.

Un projet, en général d'actualité dans un canton romand devra permettre d'aborder concrètement un problème usuel de transport et circulation.

CONTENU

- Nuisances de la circulation (le bruit) et études d'impacts
- Problématique de l'évaluation de variantes de projets - Processus consultatifs et participatifs
- Projet d'aménagement en transport (30 h environ)

FORME DE L'ENSEIGNEMENT : Exposés à l'aide de moyens audio-visuels, Présentation d'études de cas

DOCUMENTATION : Différents fascicules polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Voies de circulation, Aménagement du territoire, Transport 1

Préparation pour : Diplôme pratique dans cette branche
Titre: DIRECTION ET ORGANISATION DES TRAVAUX

Enseignant: R. Sinniger, professeur, et S. Müller, chargé de cours

Heures totales: 30
Par semaine: Cours 2 Exercices 1 Pratique

Destinataires et contrôle des études:

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie Civil</td>
<td>8</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie Rural</td>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

OBJECTIFS

Les étudiants seront capables de:
- décrire les principes fondamentaux de l'organisation des travaux de génie civil, de la mise en soumission, de l'adjudication et de la direction;
- analyser les éléments déterminant la structure des prix de vente des travaux de construction. Présentation du contenu des dossiers de soumission et des éléments du contrat d'entreprise.

CONTENU

- Définitions : maître de l'ouvrage, ingénieur et architecte, entrepreneur.
- Devoirs et responsabilités du maître de l'ouvrage, de l'ingénieur et de l'entrepreneur. Eléments du contrat d'entreprise, conditions générales et particulières, libellé de la série de prix.
- Organisation de l'entreprise et des chantiers.
- Installations de chantier.
- Programme de travail, système de représentation.
- Bases du calcul des prix de vente : coûts des matériaux, rendements, coût de la main d'œuvre, coût des installations, frais directs et indirects, frais généraux.
- Prix d'un travail élémentaire et formation des prix.
- Travaux après adjudication.
- Transports, terrassements et bétonnage.

FORME DE L'ENSEIGNEMENT: Ex cathedra et discussion d'exemples d'application. Exercices d'application et études de cas effectués en salle.

DOCUMENTATION: Cours polycopiés et fiches polycopiées diverses. Normes SIA 103 et 118.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Droit I et II.
Préparation pour:
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRG</td>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Encadrer les étudiants dans la réalisation du mémoire HTE

CONTENU

Suivi des problématiquea et orientation méthodologique

Discussion des travaux

FORME DE L'ENSEIGNEMENT: Ex cathedra et discussions

DOCUMENTATION: documents divers

LIAISON AVEC D'AUTRES COURS:
Titre: Mathématiques (répétitions)

Enseignant: K. ARBENZ, professeur EPFL

Heures totales: 30

<table>
<thead>
<tr>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toutes</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Destinataires et contrôle des études

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toutes</td>
<td>1</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

L'étudiant insuffisamment préparé, en particulier le porteur d'une maturité de type A, B, D ou E, raffermira ou acquerra les connaissances mathématiques élémentaires nécessaires.

CONTENU

Algèbre des nombres complexes; propriétés des fonctions élémentaires; tangente, normale, maxima et minima, point d'inflexion; éléments de géométrie analytiques; calcul vectoriel et matriciel; exercices supplémentaires du calcul différentiel et intégral.

FORME DE L'ENSEIGNEMENT: Ex cathedra

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis: Cours de base en mathématiques et physique

Préparation pour: