<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>I</td>
</tr>
<tr>
<td>STRUCTURE DU PLAN D'ETUDES</td>
<td>II</td>
</tr>
<tr>
<td>PLAN D'ETUDES ET REGLEMENT DU CONTROLE DES ETUDES</td>
<td>III</td>
</tr>
<tr>
<td>ORDONNANCE DU CONTROLE DES ETUDES</td>
<td>VIII</td>
</tr>
<tr>
<td>PRESENTATION SCHEMATIQUE DU PLAN D'ETUDES</td>
<td>XIII</td>
</tr>
<tr>
<td>TABLE DES MATIERES PAR ENSEIGNANTS</td>
<td>XXIII</td>
</tr>
<tr>
<td>TABLE DES MATIERES SELON LE PLAN D'ETUDES</td>
<td>XXV</td>
</tr>
<tr>
<td>Cours du 1er semestre</td>
<td>1</td>
</tr>
<tr>
<td>Cours du 2e semestre</td>
<td>12</td>
</tr>
<tr>
<td>Cours du 3e semestre</td>
<td>22</td>
</tr>
<tr>
<td>Cours du 4e semestre</td>
<td>34</td>
</tr>
<tr>
<td>Cours du 5e semestre</td>
<td>47</td>
</tr>
<tr>
<td>Cours du 6e semestre</td>
<td>66</td>
</tr>
<tr>
<td>Cours du 7e semestre</td>
<td>85</td>
</tr>
<tr>
<td>Cours du 8e semestre</td>
<td>111</td>
</tr>
<tr>
<td>Répétition en mathématiques</td>
<td>128</td>
</tr>
</tbody>
</table>
INTRODUCTION

Depuis la rentrée académique 1988-1989, le Département de génie rural (DGR) offre à ses étudiants un nouveau programme de formation préparant à une activité professionnelle dans le domaine du génie rural, de l’environnement ou des mensurations.

Les divers enseignements du plan d'études sont répartis de la façon suivante : un seul ensemble de cours et d'exercices est imposé à tous les étudiants durant le premier cycle, c'est-à-dire durant les première et deuxième années d'études. Cet ensemble comporte toutes les sciences de base (mathématiques, statistiques, informatique, mécanique, physique, chimie etc.), le début des cours en sciences appliquées et en génie rural ainsi qu'un enseignement général ou d'initiation en génie de l'environnement et en mensuration. A la fin du premier cycle, les étudiants doivent choisir entre deux filières combinant la formation en génie rural avec deux blocs de cours de spécialisation soit en environnement soit en mensuration.

Dans le domaine du génie rural, l'enseignement vise à former des ingénieurs avec de solides connaissances théoriques et pratiques concernant la réalisation d'équipements et d'aménagements techniques et fonciers de l'espace rural.

L'ingénieur du génie rural avec spécialisation en génie de l'environnement aura aussi les connaissances de base suffisantes pour être un concepteur et un réalisateur d'équipements de lutte contre la pollution, pour la gestion rationnelle de l'environnement ainsi que pour en contrôler l'évolution.

Combinée avec le génie rural, la spécialisation en mensuration a pour but de former des ingénieurs maîtrisant les principales techniques de l'acquisition, du traitement et de la représentation de données pour la description géométrique du territoire. Elle assure également la formation théorique nécessaire pour un accès direct à l'examen du brevet fédéral d'ingénieur géomètre.

Le DGR contribue ainsi la formation d'ingénieurs indispensables à la gestion d'un capital limité et fragile, mais vital : le territoire-sol.

Pour tous renseignements, prière de contacter :

Secrétariat du département de génie rural
Bureau GR A2 365 - Bâtiment génie rural, 2e étage
Mme A. Schaub, tél. 021 693 27 71
GR-Ecublens
1015 Lausanne

Chef du département
Prof. A. Miserrez
Institut des Mensurations/Géodésie et Mensuration
GR-Ecublens
1015 Lausanne

Président de la commission d'enseignement
Prof. O. Köhl
Institut des Mensurations/Photogrammétrie
GR-Ecublens
1015 Lausanne

Le Département de génie rural
STRUCTURE DU PLAN D'ETUDES

Sciences de base 1030 h

Sciences appliquées 600 h

Environnement 200 h

Mensuration 200 h

Environnement 600 h

Génie rural 460 h

Construction 290 h

Mensuration 600 h

Non technique 200 h

Diplôme d'ingénieur du génie rural

Mention "Environnement"

Mention "Mensuration"
Plan d’études

de la Section de Génie rural, environnement et mensuration

arrêté par le CEPF le 26 juin 1990 en vertu de l’article 7, 3e alinéa
de l’ordonnance sur le CEPF du 16 novembre 1983

valable seulement pour l’année académique 1990/91
GÉNIE RURAL

<table>
<thead>
<tr>
<th>Matière</th>
<th>Les notes sont indiquées sous réserve de modification</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sciences de base:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse I, II ou</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyses II (ou en allemand)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse numérique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algèbre linéaire I, II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Géométrie I, II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probabilité et statistique I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmation I, II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mécanique générale I, II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physique générale I, II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP de Physique générale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimie appliquée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biologie générale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infographie et dessin technique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sciences appliquées:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Géologie I, II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologie I, II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologie II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologie III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physique du sol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologie agricole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pédologie I, II, III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie rural et aménagements:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remaniement parcellaire I, II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remaniement parcellaire III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routtes et chemins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipements ruraux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aménagements hydro-agricoles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assainissement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aménagements ruraux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sédiments de génie rural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travaux de génie rural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Géométrie des constructions I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Géotechnique et fondations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matériaux de construction II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction I, II, III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divers:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruments de travail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation proc. complémentaire I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation proc. complémentaire II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation des travaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systèmes d'information géogr. L B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droit I, II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTE: Économie rurale I, II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTE: Sociologie rurale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathématiques (nédétion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campagnes de terrain:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campagne de terrain:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c = cours e = exercices p = branches pratiques ct = campagnes de terrain t = cours facultatif
GÉNIE RURAL

SEMESTRE	**Les noms sont indiqués sous réserve de modification**	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**8**
Matière | **Enseignants** | c | e | p | c | e | p | c | e | p | c | e | p | c | e | p | c | e | p | c | e | p

<table>
<thead>
<tr>
<th>Matière naturel et environnement - tronc commun:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotechnologie</td>
</tr>
<tr>
<td>Ecologie II</td>
</tr>
<tr>
<td>Assainissement des apparetemens II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matière naturel et environnement - spécialisation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothèse et écotoxicologie I, II, III</td>
</tr>
<tr>
<td>Relevé des essais I</td>
</tr>
<tr>
<td>Photo-interprétation III</td>
</tr>
<tr>
<td>Relevé des essais II</td>
</tr>
<tr>
<td>Récolte et tri des déchets I, II</td>
</tr>
<tr>
<td>Géologie II</td>
</tr>
<tr>
<td>Relevé de gisement de l'environnement</td>
</tr>
<tr>
<td>Construction des ouvrages</td>
</tr>
<tr>
<td>Géologie II</td>
</tr>
<tr>
<td>Géologie géologique II</td>
</tr>
<tr>
<td>Géologie géologique III</td>
</tr>
<tr>
<td>Agglomération II</td>
</tr>
<tr>
<td>Dilution et dispersion atmosphérique I, II</td>
</tr>
<tr>
<td>Bases du milieu naturel</td>
</tr>
<tr>
<td>Géologie III</td>
</tr>
</tbody>
</table>

Témoignage - Spécialisation:

<table>
<thead>
<tr>
<th>Spécialité</th>
<th>Enseignants</th>
<th>c</th>
<th>e</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrographie I, II</td>
<td>Ködl</td>
<td>DGR</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hydrodes, essais I, II</td>
<td>Duraz</td>
<td>DGR</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Essais de forage</td>
<td>Höpfliger</td>
<td>DI</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Essais de forage</td>
<td>Miserez</td>
<td>DGR</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Essais de forage</td>
<td>Golay</td>
<td>DGR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Essais de forage</td>
<td>Köidl</td>
<td>DGR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Essais de forage</td>
<td>Miserez</td>
<td>DGR</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Essais de forage</td>
<td>Miserz</td>
<td>DGR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Essais de forage</td>
<td>Köidl/Miserz</td>
<td>DGR</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Essais de forage</td>
<td>Steinrucker</td>
<td>URO</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

1er et 2e année: l'étudiant suit les cours du tronc commun
3e et 4e année: l'étudiant choisit l'une des deux spécialisations

Irrigation des territoires:*

- Année 1: Professeur A. Müzy
- Année 2: Professeur L.-Y. Mayrste
- Professeur: Professeur J.-C. Védé

Irrigation des territoires:

- IRRIGATION DES TERRITOIRE
- TÉMOIGNAGE: **Spécialistes**

Tronc commun

<table>
<thead>
<tr>
<th>Témoignage</th>
<th>Spécialisme</th>
<th>Spécial. Environ.</th>
<th>Spécial. Marsuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totaux par semaine</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Totaux par trimestre</td>
<td>525</td>
<td>350</td>
<td>525</td>
</tr>
</tbody>
</table>
Le Conseil des Ecoles,
Vu l'article 33 de l’ordonnance du contrôle du 2.7.1980"
arrête

Article premier
Le règlement suivant est applicable à la Section de Génie rural, Environnement et Mensuration.

Article 2 - Examen propédeutique I

<table>
<thead>
<tr>
<th>Branches théoriques</th>
<th>coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse I, II (écrit)</td>
<td>1</td>
</tr>
<tr>
<td>Analyse I, II (oral)</td>
<td>1</td>
</tr>
<tr>
<td>Algèbre linéaire I, II (écrit)</td>
<td>1</td>
</tr>
<tr>
<td>Géodésie II (écrit)</td>
<td>1</td>
</tr>
<tr>
<td>Géologie I, II (oral)</td>
<td>1</td>
</tr>
<tr>
<td>Mécanique générale I, II (écrit)</td>
<td>1</td>
</tr>
<tr>
<td>Chimie appliquée (écrit)</td>
<td>1</td>
</tr>
</tbody>
</table>

Branches pratiques

- 8. Infographie et Dessin technique (hiver) 1
- 9. Programmation, I, II (hiver + été) 2
- 10. Météorologie I, II (hiver + été) 2
- 11. Topographie, I, II, projet (hiver + été) 2

Conditions de réussite:
- moyenne des branches 1 à 7 ≥ 6,0 et
- moyenne des branches 8 à 11 ≥ 6,0.

Article 3 - Examen propédeutique II

<table>
<thead>
<tr>
<th>Branches théoriques</th>
<th>coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse III et Analyse numérique (écrit)</td>
<td>1</td>
</tr>
<tr>
<td>Physique générale, I, II (écrit, oral)</td>
<td>1</td>
</tr>
<tr>
<td>Topographie I à IV et Théorie des erreurs (oral)</td>
<td>1</td>
</tr>
<tr>
<td>Géodésie I, II (oral)</td>
<td>1</td>
</tr>
<tr>
<td>Mécanique des constructions I, II (oral)</td>
<td>1</td>
</tr>
<tr>
<td>Biologie générale et Biotechnologie (oral)</td>
<td>1</td>
</tr>
<tr>
<td>Probabilité et statistique (écrit)</td>
<td>1</td>
</tr>
<tr>
<td>Hydraulique I, II et Hydrologie I (écrit)</td>
<td>1</td>
</tr>
</tbody>
</table>

Branches pratiques

- 9. TP de Physique générale (hiver) 1
- 10. Hydraulique, I, II, Laboratoire (hiver + été) 2
- 11. Formation professionnelle complémentaire I, II (hiver + été) 2
- 12. Topographie, Campagne (été) 2

Conditions de réussite:
- moyenne des branches 1 à 8 ≥ 6,0 et
- moyenne des branches 9 à 12 ≥ 6,0.

Article 4 - Promotion en 4e année

<table>
<thead>
<tr>
<th>Branches théoriques - Session de printemps</th>
<th>coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physique du sol et Hydraulique agricole</td>
<td>1</td>
</tr>
<tr>
<td>Ecologie I, II</td>
<td>1</td>
</tr>
<tr>
<td>Assainissement des agglomérations I, II</td>
<td>1</td>
</tr>
<tr>
<td>Gestion et conservation des sols</td>
<td>1</td>
</tr>
<tr>
<td>Spécialisation «Environnement»</td>
<td></td>
</tr>
<tr>
<td>4M Théorie des erreurs II</td>
<td></td>
</tr>
<tr>
<td>Spécialisation «Mensuration»</td>
<td></td>
</tr>
<tr>
<td>Branches théoriques - Session d'été</td>
<td></td>
</tr>
<tr>
<td>Droit I, II</td>
<td>1</td>
</tr>
<tr>
<td>Systèmes d'information géographique I, II</td>
<td>1</td>
</tr>
<tr>
<td>Photo-interprétation</td>
<td>1</td>
</tr>
<tr>
<td>7M Mensuration cadastrale</td>
<td>1</td>
</tr>
<tr>
<td>Spécialisation «Mensuration»</td>
<td></td>
</tr>
<tr>
<td>8M Photogrammétrie I, II</td>
<td></td>
</tr>
<tr>
<td>Spécialisation «Mensuration»</td>
<td></td>
</tr>
<tr>
<td>Branches pratiques</td>
<td></td>
</tr>
<tr>
<td>Agronomie générale I et</td>
<td></td>
</tr>
<tr>
<td>Pédologie III, projet (été)</td>
<td></td>
</tr>
<tr>
<td>Géotechnique et fondations, projet (été)</td>
<td></td>
</tr>
<tr>
<td>Construction I, II, projet (hiver + été)</td>
<td></td>
</tr>
<tr>
<td>HTE: Economie rurale II, projet (été)</td>
<td></td>
</tr>
<tr>
<td>13E Génie microbiologique, laboratoire (hiver)</td>
<td>1</td>
</tr>
<tr>
<td>Spécialisation «Environnements»</td>
<td></td>
</tr>
<tr>
<td>Conditions de réussite</td>
<td></td>
</tr>
</tbody>
</table>
- moyenne des branches 1 à 6 [Spécialisation «Environnement»] ou 1 à 8 [Spécialisation «Mensuration»] ≥ 6,0 et moyenne des branches 9 à 13 ≥ 6,0.

Article 6 - Admission à l'examen final

<table>
<thead>
<tr>
<th>Branches pratiques - Tronc commun</th>
<th>coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assainissement et irrigation, projet (hiver)</td>
<td>1</td>
</tr>
<tr>
<td>2. Rénovation parcellaire et aménagement du territoire III (été), Aménagements et équipements ruraux (projet (hiver + été)</td>
<td>1</td>
</tr>
<tr>
<td>3. Matériaux de construction II, Laboratoire (hiver)</td>
<td>1</td>
</tr>
<tr>
<td>4. HTE: Sociologie rurale, projet (été)</td>
<td>1</td>
</tr>
<tr>
<td>5. Génie rural, Campagne et travaux de Génie rural (hiver)</td>
<td>2</td>
</tr>
</tbody>
</table>

Branches pratiques - Spécialisation «Environnement»

- 6E Génie sanitaire III, Valorisation biologique des déchets II, Gestion du milieu naturel, projet (été) 2
- 7E Génie de l'environnement Centre et travaux de Génie de l'environnement (hiver) 2

Branches pratiques - Spécialisation «Mensuration»

- 6M Systèmes d'information du territoire III, IV, Topométrie appliquée I, II Séminaires de mensuration, projet (hiver + été) 2
- 7M Mensuration, Campagne et travaux de mensuration (hiver) 2

Conditions de réussite:
- moyenne des branches 1 à 7 ≥ 6,0.

Examen final (EF)

<table>
<thead>
<tr>
<th>Branches théoriques</th>
<th>coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Construction I à III</td>
<td></td>
</tr>
<tr>
<td>2. Aménagement (a)</td>
<td></td>
</tr>
<tr>
<td>3. Génie rural (b)</td>
<td></td>
</tr>
</tbody>
</table>

a) comprend les branches suivantes: Aménagement du territoire I, II Rénovation parcellaire I, II, III Aménagements ruraux
b) comprend les branches suivantes: Aménagement des terres et des eaux (seulement pour 90/91) Aménagements hydro-agricoles (dès 91/92)

Spécialisation «Environnement»

- 4. Génie sanitaire (c)
- 5. Protection de l'environnement (d)
- c) comprend les branches suivantes: Génie sanitaire I, II Traitement des déchets I, II Valorisation biologique des déchets I, II Construction des ouvrages de génie sanitaire Approvisionnement en eau potable

d) comprend les branches suivantes: Qualité des eaux et Écotoxicologie I à III Gestion du milieu naturel Pollution et déposition atmosphérique Végétation I, II

Spécialisation «Mensuration»

- 4. Cartographie et Systèmes d'information du territoire (a)
- 5. Géodésie et Topométrie I
- 6. Droit III, IV
- e) comprend les branches suivantes: Cartographie numérique Systèmes d'information du territoire I à IV

Spécialisation «Environnement»

- 4. Géodésie et Topométrie I
- 6. Droit III, IV
- e) comprend les branches suivantes: Cartographie numérique Systèmes d'information du territoire I à IV

Spécialisation «Mensuration»

- 4. Cartographie et Systèmes d'information du territoire (a)
- 5. Géodésie et Topométrie I
- 6. Droit III, IV
- e) comprend les branches suivantes: Cartographie numérique Systèmes d'information du territoire I à IV

Spécialisation «Mensuration»

La note EF s'obtient par le calcul de la moyenne des notes attribuées aux branches théoriques ci-dessus. Moyenne exigée pour se présenter au travail pratique de diplôme ≥ 6,0.
Travail pratique de diplôme (TPD)

Une seule note est attribuée au TPD. La réussite du TPD implique l'obtention d'une note ≥ 6,0.

Le travail pratique de diplôme s'effectue dans les domaines couvrant les branches suivies au 2e cycle.

Diplôme

Le note de diplôme s'obtient en calculant la moyenne des notes EF + TPD.

Article 7 - Campagne de terrain

Les campagnes faisant l'objet de travaux pratiques sont:
 — après le 4e semestre: 2 semaines,
 Campagne de topographie
 — avant le 7e semestre: 6 semaines, (y compris la 1e semaine
 du 2e semestre), à savoir:
 Campagne de génie rural, 3 semaines
 Campagne de génie de l'environnement (spécialisation
 «Environnement»), 3 semaines
 ou
 Campagne de génie rural, 3 semaines
 Campagne de mensuration (spécialisation «Mensuration»),
 3 semaines.

Les campagnes comprennent au total 5 semaines de terrain et
1 semaine de travail de bureau.

1 RS 414.132.2
2 RS 211.432.261

Pour les autres dispositions, veuillez consulter l'ordonnance du
contrôle des études.

Article 8 - Brevet fédéral d'ingénieur géomètre

1. Le brevet fédéral d'ingénieur géomètre, délivré par le Département fédéral de justice et police, autorise les candidats de nationalité suisse à exécuter les mesurations cadastrales sur le territoire de la Confédération (voire Ordonnance concernant le brevet fédéral d'ingénieur géomètre du 12 décembre 1983)1.

2. Pour obtenir le brevet, le candidat doit prouver qu'il a la formation théorique nécessaire et subit l'examen de brevet. Seule le diplôme avec la mention «Mensuration» donne la formation théorique nécessaire.

3. Le Département fédéral de justice et police, autorité supérieure de surveillance du cadastre et des examens fédéraux du brevet, peut se faire représenter par une délégation aux examens de diplôme. L'EPFL informe régulièrement et en temps utile le Département fédéral de justice et police (directeur des mesurations cadastrales).

Article 9 - Abrogation du droit en vigueur

Le règlement spécial des épreuves de diplôme de la Section de Génie rural et Géomètre du 28 mars 1970 est abrogé.

Article 10 - Entrée en vigueur

Le présent règlement entre en vigueur le 26 juin 1990.

Au nom du Conseil des Ecoles polytechniques fédérales:

Le président: H. Ursprung
Le secrétaire: J. Pufahl
Ordonnance
du contrôle des études
à l'Ecole polytechnique fédérale de Lausanne

(EPFL)¹

du 2 juillet 1980

Approuvé par le Conseil fédéral le 17 septembre 1980

Le Conseil des écoles polytechniques fédérales.
vu l'article 7, 1er alinéa, lettre e de l'ordonnance du 16 novembre 1983² sur le CEPF; vu l'article 28 de l'ordonnance du 16 novembre 1983³ sur les EPF,⁴ arrête:

Section 1: Généralités

Article premier Définitions

Au sens de la présente ordonnance, on entend par

a. Cycle d'études: une subdivision des études, d'une durée de deux ans;
b. Branche: une matière figurant dans les plans d'études;
c. Branche théorique: une matière enseignée pouvant faire l'objet d'une épreuve;
d. Branches pratiques: les branches suivantes: laboratoire, dessin, projet, atelier, exercices sur le terrain (campagnes) ou branches apparentées, qui ne peuvent faire l'objet d'une épreuve;
e. * Branches de promotion: les branches théoriques et pratiques servant à la promotion au cours du deuxième cycle d'études;
f. * Epreuve: une interrogation sur une branche théorique ou un groupe de branches théoriques; elle peut être écrite ou orale;
g. * Examen: un ensemble d'épreuves formant un tout qui s'étendent sur une ou plusieurs sessions;
h. * Session: la période pendant laquelle se déroulent les épreuves;
i. * Répétition: le fait de se représenter à une épreuve donnée lors d'une autre session du même examen ou de suivre à nouveau l'enseignement des branches pratiques;
j. * Tentative: le fait de se présenter à un examen.

Art. 2 But

1 La présente ordonnance vise à permettre le contrôle des connaissances des étudiants pendant leur formation et à la fin de leurs études.

2 Elle est complétée par des règlements d'application propres à chaque département et établis compte tenu de son plan d'études particulier.

Art. 3. Formes de contrôle

Le contrôle revêt les trois formes suivantes: *

a. Le contrôle continu qui porte sur les branches théoriques et pratiques;
b. Les examens de diplôme à savour:
 1. pendant le premier cycle d'études, le premier examen propédeutique (PI) et le deuxième examen propédeutique (PPI);
 2. après le deuxième cycle d'études, l'examen final assorti d'un travail pratique de diplôme.
c. Les examens de promotion.

Art. 4. Promotion annuelle

1 Pendant le premier cycle, la promotion annuelle est liée à l'obtention d'une note moyenne suffisante à l'examen propédeutique: l'étudiant autorisé par le président de l'Ecole, pour cause de maladie, d'accident, de service militaire, ou pour d'autres motifs importants, à se présenter à la session de printemps est admis conditionnellement à suivre l'enseignement du semestre d'études supérieur.

2 Pendant le deuxième cycle, l'étudiant doit obtenir aux examens de promotion une note moyenne au moins égale à 6 pour pouvoir être promu en quatrième année ou admis à passer l'examen final.

Art. 5 Notes

1 L'échelle des notes va de 0 (note la plus basse) à 10 (note la meilleure). Les demi-points sont admis.

2 La moyenne minimum exigée est 6. Les règlements d'application peuvent en outre prescrire que l'étudiant obtienne cette moyenne dans un ensemble de branches déterminé.

RO 1980 1632

¹ RS 414.132.1; nouvelle teneur du titre selon le ch. 1 de l'O du CEPF du 25.1.84, en vigueur depuis le 1.3.84 (RO 1984 295)
² RS 414.110.3
³ RS 414.131
⁴ Nouvelle teneur de la dernière partie de la phrase selon le ch. 1 de l'O du CEPF du 25.1.84, en vigueur depuis le 1.3.84 (RO 1984 295)
1 Les règlements d'application peuvent prévoir que certaines branches ou certains groupes de branches seront affectés de coefficients.
2 Le mode de calcul des moyennes est fixé par les règlements d'application.

Art. 6 Tentative
1 Tout examen de diplôme ou de promotion peut faire l'objet de deux tentatives.
2 Chaque année ne peut être recommandée qu'une fois.

Art. 7 Experts
1 Un expert assiste l'examinateur à chaque épreuve orale des examens de diplôme ou de promotion.
2 Aux examens propédeutiques et de promotion, l'expert, choisi parmi les membres de l'Ecole, joue un rôle d'observation et de conciliation ; il veille au bon déroulement de l'épreuve.
3 L'examen final et pour le travail pratique de diplôme, l'expert non membre de l'Ecole participe en outre à l'interrogation et à la notation du candidat.

Art. 8. Organisation
Sur le plan matériel, l'organisation des examens incombe au Secrétariat général de l'Ecole qui, notamment, fixe les dates des sessions et les modalités d'inscription.

Art. 9. Retrait
1 Le candidat peut retirer son inscription à une ou plusieurs épreuves au plus tard deux semaines avant la session.
2 Passé ce délai, le retrait n'est admissible que pour des motifs importants et doit porter sur l'ensemble des épreuves auxquelles le candidat s'est inscrit pour la session considérée.

Art. 10 Empêchement
1 Lorsque pour des motifs importants le candidat est dans l'impossibilité de commencer un examen ou d'en subir toutes les épreuves, il doit en aviser le Secrétaire général dans les plus brefs délais et lui présenter les attestations nécessaires.
2 Les résultats des épreuves qu'il a déjà passées lui sont acquis.
3 Un échec à un examen ne peut pas être annulé par une attestation présentée après coup.

Art. 11 Absence
Le candidat qui, sans excuse valable, ne se présente pas à une épreuve reçoit la note zéro.

Section 2: Contrôle continu

Art. 12 Branches théoriques
1 Dans les branches théoriques, le contrôle continu (exercices combinés à des cours théoriques, travaux écrits, séminaires) qui a lieu par écrit ou oralement durant les semestres, est considéré comme un moyen permettant à l'étudiant de vérifier lui-même le niveau de ses connaissances et à l'enseignant de déterminer si les étudiants ont assimilé son enseignement.
2 Il ne sert pas à établir si les étudiants remplissent les conditions pour être promus en année supérieure.

Art. 13 Branches pratiques
1 Les branches pratiques sont définies dans les règlements d'application.
2 Les notes obtenues dans ces branches expriment la valeur du travail fourni durant le semestre et entrent dans le calcul de la note moyenne des examens propédeutiques et de celle des examens de promotion.
3 Les résultats obtenus durant l'année dans les branches pratiques sont affichés par les soins du département auquel est rattaché l'étudiant, de manière à permettre à celui-ci de retirer, dans les délais requis, son inscription à un examen.

Section 3: Examens propédeutiques

Art. 14 Définition
Les examens propédeutiques consistent en des épreuves écrites ou orales portant sur les branches théoriques. Ils visent à déterminer si l'étudiant a assimilé l'enseignement qui lui a été dispensé.

Art. 15 Conditions d'admission
L'étudiant qui, dans une branche pratique, a obtenu la note zéro n'est pas admis à se présenter aux examens propédeutiques.

Art. 16 Épreuves
1 Les branches théoriques qui font l'objet d'une épreuve et dont le nombre est limité à huit sont fixées par les règlements d'application. Si une même branche fait l'objet d'une épreuve écrite et orale, cette épreuve compte pour deux.
2 Les règlements d'application déterminent les branches pratiques dans lesquelles les notes obtenues entrent dans le calcul de la note moyenne aux examens propédeutiques.
Art. 17 Branches
1 Les règlements d’application peuvent prévoir que des branches apparentées feront l’objet d’une seule épreuve.
2 Les branches dont l’enseignement débute au premier cycle et se termine au deuxième cycle, font partie du deuxième cycle.
3 Les épreuves portent sur l’enseignement dispensé durant l’année qui précède la session d’examen.

Art. 18° Sessions d’examen
1 Deux sessions ordinaires sont prévues pour chaque examen propédeutique : elles font suite à l’année d’études et se succèdent dans l’ordre suivant : session d’été (E) et session d’automne (A).
2 L’étudiant choisit la session à laquelle il veut se présenter à une épreuve donnée ; toutefois, il doit avoir passé l’ensemble des épreuves au plus tard à la session A, le 3° alinéa étant réservé.
3 Une session exceptionnelle est organisée au prorata temps (P) pour les étudiants empêchés de se présenter à la session A, pour les motifs mentionnés à l’article 4, 1° alinéa. La tentative du candidat qui, pour des motifs importants, ne peut pas se présenter à la session P est annulée ; dans ce cas, il n’est pas autorisé à poursuivre le cours normal de ses études.

Art 19° Abandon
1 L’étudiant qui, en cours d’examen, décide de recommencer l’année qu’il vient d’effectuer, a le droit de poursuivre les épreuves jusqu’à la session A.
2 Le fait de renoncer à terminer un examen à la session A équivaut à un échec.

Art. 20 Communication des résultats
Le président de l’Ecole communiquera les résultats définitifs aux candidats au moyen d’un bulletin (bulletin propédeutique).

Art. 21 Répétition
1 L’étudiant est autorisé à répéter une fois chaque épreuve dans le cadre d’une tentative et ce, indépendamment du résultat obtenu la première fois ; seule la deuxième note est alors prise en considération pour le calcul de la moyenne.
2 Lors d’un changement de plan d’études, le président de l’Ecole fixe, dans chaque cas, les modalités applicables à la répétition des branches prátiques par l’étudiant qui :
 a. A échoué;
 b. A abandonné ou;
 c. Désire recommencer tout ou partie des branches pratiques quand bien même il a obtenu une moyenne suffisante.

Art. 22. Echec
1 A échoué :
 a. l’étudiant qui n’a pas obtenu une moyenne égale à 6 à l’examen propédeutique;
 b. l’étudiant qui a obtenu dans les branches théoriques deux notes ou plus inférieures à 4, bien que la ou les moyennes exigées dans les réglements d’applications soient suffisantes.
2 Cependant, si la moyenne des notes obtenues dans les branches pratiques est au moins égale à 6, l’étudiant est dispensé de les réfaire.
3 L’étudiant qui a échoué à la première tentative peut
 a. Soit recommencer tout ou partie de l’année et se représenter à la série de sessions suivante.
 b. Soit demander sa mise en congé jusqu’à la seconde tentative.

Section 3a ‡ : Examens de promotion

Art. 22a Définition
Les examens de promotion consistent en des épreuves écrites ou orales portant sur les branches de promotion. Ils visent à déterminer si l’étudiant a assimilé l’enseignement qui lui a été dispensé.

Art. 22b Branches de promotion
1 Les règlements d’application déterminent les branches théoriques de promotion qui font l’objet d’une épreuve ainsi que les branches pratiques de promotion dont les notes entrent dans le calcul de la note moyenne des examens de promotion.
2 Les règlements d’application prévoient les ensembles de branches de promotion déterminés ayant une moyenne séparée. S’ils n’y a qu’un seul ensemble de branches de promotion, celui-ci doit comporter au moins trois branches s’il ne s’agit que de branches pratiques et quatre branches s’il s’agit de branches théoriques ou d’un mélange de branches théoriques et pratiques.

Art. 22c Sessions d’examen
1 Le président de l’Ecole fixe deux sessions d’examen par année, à la fin de chaque semestre.
2 Les épreuves des branches de promotion dont l’enseignement porte sur un semestre sont placées dans la session qui suit.
3 Les épreuves des branches de promotion dont l’enseignement porte sur deux semestres ou plus sont placées dans la session qui suit la fin de l’enseignement, ou à la fin de chaque semestre, selon les modalités des règlements d’application.

‡ Nouvelle teneur selon ch. 1 de l’O du CEPF du 25.1.84, en vigueur depuis le 1.3.84 (RO 1984 295)
Art. 22d Abandon
Le fait de renoncer à terminer un examen de promotion équivaut à un échec.

Art. 22e Communication des résultats
Le président de l'Ecole communique les résultats définitifs aux candidats au moyen d'un bulletin (bulletin de promotion).

Art. 22f Répétition
1 L'étudiant n'est pas autorisé à répéter une épreuve dans le cadre d'une tentative.
2 Lors d'un changement de plan d'études, le président de l'Ecole fixe, dans chaque cas, les modalités applicables à la répétition des branches de promotion par l'étudiant qui:
 a. A échoué;
 b. A abandonné;
 c. Désire recommencer tout ou partie des branches de promotion quand bien même il a obtenu une moyenne suffisante.

Art. 22g Échec
1 A échoué:
 a. L'étudiant qui n'a pas obtenu une moyenne égale à 6 à l'examen de promotion;
 b. L'étudiant qui a obtenu la note zéro dans une branche pratique.
2 Si une seule moyenne est prévue par les règlements d'application, l'étudiant qui a échoué est tenu de repasser l'examen dans les branches théoriques et de suivre à nouveau l'enseignement des branches pratiques.
3 Si plusieurs moyennes sont prévues par les règlements d'application, l'étudiant qui a échoué est tenu de repasser les épreuves des branches dont la moyenne était insuffisante ou de suivre à nouveau l'enseignement de celles-ci, les branches dont la moyenne est suffisante lui étant acquises.

Section 4: Examen final et travail pratique de diplôme

Art. 23 Définition
L'examen final se compose d'épreuves orales portant sur les branches théoriques; il vise à déterminer si l'étudiant a assimilé les connaissances dans les branches spécifiques de la profession. Il est assorti d'un travail pratique de diplôme permettant d'apprécier les aptitudes professionnelles du candidat.

Art. 24 Conditions d'admission
1 Pour être admis à passer l'examen final, l'étudiant doit remplir les conditions suivantes:
 a. Avoir réussi les examens propédeutiques I et II;
 b. Avoir obtenu des résultats suffisants aux examens de promotion durant la quatrième année.
2 L'étudiant est admis à entreprendre le travail pratique de diplôme s'il a obtenu une note moyenne au moins égale à 6 à l'examen final.

Art. 25 Épreuves
1 Les règlements d'application déterminent les branches sur lesquelles portent les épreuves dont le nombre est limité à dix.
2 Ils peuvent prévoir que des branches apparentées feront l'objet d'une seule épreuve.
3 Les épreuves portent sur l'enseignement dispensé durant l'année ou les deux années qui précèdent la session d'examens.

Art. 26 Travail pratique de diplôme
1 Le travail pratique de diplôme est organisé sous la responsabilité de l'Ecole, dans un délai fixé par les règlements d'application. Son contenu est déterminé par le professeur sous la direction duquel le candidat désire travailler, dans les limites des orientations fixées par le département.
2 A la demande du candidat, le département concerné peut charger de cette tâche un professeur d'un autre département.

Art. 27 Sessions de l'examen final
La session de l'examen final a lieu à la fin de la quatrième année, en automne.

Art. 28 Répétition
L'étudiant n'est pas autorisé à répéter une épreuve dans le cadre d'une tentative.

Art. 29 Échec
1 A échoué l'étudiant qui n'a pas obtenu une moyenne au moins égale à 6 à l'examen final ou au travail pratique de diplôme.
2 En cas d'échec à l'examen final, l'étudiant doit repasser l'ensemble des épreuves.
3 En cas d'échec au travail pratique de diplôme, celui-ci doit être refait dans le délai d'une année. Les résultats de l'examen final étant acquis.
Section 5: Diplôme

Art. 30 Bulletin final
1 Le président de l'Ecole adresse aux intéressés un bulletin dans lequel il leur communique les résultats définitifs de l'examen final et du travail pratique de diplôme.
2 Le bulletin final des examens de diplôme porte les indications suivantes:
 a. Note moyenne obtenue au premier examen propédeutique (P I);
 b. Note moyenne obtenue au deuxième examen propédeutique (P II);
 c. Résultats et moyenne de l'examen final;
 d. Résultat du travail pratique de diplôme;
 e. Moyenne générale du diplôme.

Art. 31 Diplôme
Le diplôme porte le sceau de l'Ecole polytechnique fédérale de Lausanne ainsi que la signature du président de l'école et celle du chef de département.

Art. 32 Titre
1 L'étudiant diplômé est autorisé à porter l'un des titres suivants:
 En génie civil: Ingénieur civil (ing. civ. dipl. EPFL)
 En génie rural et géomètre: Ingénieur du génie rural et géomètre (ing. gén. rur. et géom. dipl. EPFL)
 En mécanique: Ingénieur mécanicien (ing. méc. dipl. EPFL)
 En microtechnique: Ingénieur en microtechnique (ing. microtech. dipl. EPFL)
 En électricité: Ingénieur électricien (ing. él. dipl. EPFL)
 En physique: Ingénieur physicien (ing. phys. dipl. EPFL)
 En chimie: Ingénieur chimiste (ing. chim. dipl. EPFL)
 En mathématiques: Ingénieur mathématicien (ing. math. dipl. EPFL)
 En ingénierie: Mathématicien (math. dipl. EPFL)
 En science des matériaux: Ingénieur en science des matériaux (ing. sc. mat. dipl. EPFL)
 En architecture: Architecte (arch. dipl. EPFL)
 En informatique: Ingénieur informaticien (ing. info. dipl. EPFL).
2 Les porteurs d'un diplôme dont le titre comprend le terme «ingénieur» sont autorisés à utiliser le titre abrégé «ing. dipl. EPFL».

Section 6: Dispositions finales

Art. 33 Exécution
Le Conseil des écoles polytechniques fédérales édicte les règlements d'application.

Art. 34 Abrogation du droit en vigueur
Toutes les dispositions contraires à la présente ordonnance sont abrogées.

Art. 35 Entrée en vigueur
La présente ordonnance entre en vigueur le 22 septembre 1980.

La présente modification s'applique pour la première fois aux étudiants inscrits en troisième année au semestre d'hiver 85/86.
Les étudiants qui ont terminé leur troisième année d'études avant le semestre d'hiver 1985/86 terminent le deuxième cycle d'études selon l'ancien droit; cette disposition n'est applicable que jusqu'à la session d'automne 1989.
La présente modification entre en vigueur le 1er août 1985.
Sciences de base : 1030 h

- analyse
- algèbre linéaire
- géométrie
- programmation
- mécanique
- physique
- chimie
- biologie
- probabilités et statistiques
- analyse numérique
- travaux pratiques de physique
- infographie et dessin technique
Sciences appliquées : 600 h

- Géologie
- Hydraulique
- Hydrologie
- Pédologie
- Physique du sol
- Hydraulique agricole
- Agronomie générale
Environnement : 200 h
- Milieu naturel
- Biotechnologies
- Ecologie
- Assainissement des agglomérations
Mensuration : 200 h
- Topographie
- Théorie des erreurs
- Photo-interprétation
Génie rural : 460 h
- Assainissement des sols
- Irrigation
- Remaniement parcellaire
- Aménagement du territoire
- Aménagements ruraux
- Routes et chemins ruraux
- Equipements ruraux
- Séminaires

Construction : 290 h
- Mécanique des sols
- Mécanique des constructions
- Matériaux de construction
- Construction
Non technique : 200 h

- Formation professionnelle complémentaire
- *Systèmes d'information géographique*
- Droit
- HTE-économie rurale
- HTE-sociologie rurale
Environnement : 600 h

- Génie sanitaire
- Construction d'ouvrages de génie sanitaire
- Approvisionnement en eau potable
- Qualité des eaux et ecotoxicologie
- Gestion et conservation des sols
- Traitement des déchets
- Valorisation biologique des déchets
- Gestion du milieu naturel
- Végétation
- Pollution et déposition atmosphérique
- Génie microbiologique
Mensuration : 600 h

- Théorie des erreurs
- Topométrie appliquée
- Géodésie
- Photogrammétrie
- Cartographie numérique
- Mensuration cadastrale
- Droit
- Banques de données
- Système d'information du territoire
- Séminaires de mensuration
GENIE RURAL ET GEOMETRE

Plan d'études : contrôle

1ère année
- 1er propédeutique
- Branches pratiques

2ème année
- 2ème propédeutique
- Branches pratiques

3ème année
- Examen de promotion
- Branches pratiques

4ème année
- Branches pratiques
- Examen théorique de diplôme

Travail pratique de diplôme
- Défense orale

Diplôme d'ingénieur du génie rural EPFL
avec mention environnement ou mensuration
CAMPAGNES DE TERRAIN

A la fin du 4ème semestre :

- Campagne de topographie
 (2 semaines)

Avant le 7ème semestre :

- Campagne de génie rural
 (3 semaines)

Et selon l'option

- Campagne de génie de l'environnement
 (3 semaines)

- Campagne de mensuration
 (3 semaines)
TABLE DES MATIERES PAR ENSEIGNANTS

<table>
<thead>
<tr>
<th>Enseignant</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALOU F.</td>
<td>72, 93</td>
</tr>
<tr>
<td>BACHMANN O.</td>
<td>128</td>
</tr>
<tr>
<td>BENoit W.</td>
<td>25</td>
</tr>
<tr>
<td>BONJOUR J.-D.</td>
<td>8</td>
</tr>
<tr>
<td>BRUSCHIN J.</td>
<td>36</td>
</tr>
<tr>
<td>BUSER P.</td>
<td>1, 12</td>
</tr>
<tr>
<td>CALOZ R.</td>
<td>41, 52</td>
</tr>
<tr>
<td>CHARLES J.-P.</td>
<td>49, 67</td>
</tr>
<tr>
<td>CHEVALIER G.</td>
<td>40</td>
</tr>
<tr>
<td>CROTTAZ R.</td>
<td>69, 87, 89</td>
</tr>
<tr>
<td>DESCLOUX G.</td>
<td>34</td>
</tr>
<tr>
<td>DUPRAZ H.</td>
<td>63, 105</td>
</tr>
<tr>
<td>FALTINGS B.</td>
<td>5, 16</td>
</tr>
<tr>
<td>FURLAN V.</td>
<td>72</td>
</tr>
<tr>
<td>GABUS J.</td>
<td>9, 19</td>
</tr>
<tr>
<td>GRAF W.H.</td>
<td>27</td>
</tr>
<tr>
<td>GREMAUD G.</td>
<td>25</td>
</tr>
<tr>
<td>GOLAY F.</td>
<td>102, 123</td>
</tr>
<tr>
<td>HAINARD F.</td>
<td>95, 117</td>
</tr>
<tr>
<td>HAINARD P.</td>
<td>80</td>
</tr>
<tr>
<td>HELBLING J.-M.</td>
<td>23, 35</td>
</tr>
<tr>
<td>HOWALD P.</td>
<td>11, 21, 32, 33, 45, 46</td>
</tr>
<tr>
<td>HUNKELER P.</td>
<td>10, 20, 121</td>
</tr>
<tr>
<td>JAVET Ph.</td>
<td>7</td>
</tr>
<tr>
<td>KOLBL O.</td>
<td>62, 76, 82, 103, 123, 126</td>
</tr>
<tr>
<td>LERCH P.</td>
<td>7</td>
</tr>
<tr>
<td>LIEBLING Th-M.</td>
<td>3, 14</td>
</tr>
<tr>
<td>MEISTER J.-J.</td>
<td>6, 17</td>
</tr>
<tr>
<td>MERMoud A.</td>
<td>37, 91</td>
</tr>
<tr>
<td>MICHEL N.</td>
<td>54, 74</td>
</tr>
<tr>
<td>MIEHLBRADT M.</td>
<td>51, 73, 94</td>
</tr>
<tr>
<td>MISEREZ A.</td>
<td>84, 104, 105, 106, 109, 124, 125, 126</td>
</tr>
<tr>
<td>MISEREZ J.-P.</td>
<td>65, 83</td>
</tr>
<tr>
<td>MUSY A.</td>
<td>28, 47, 48, 70, 89, 92, 108, 111, 115, 116</td>
</tr>
<tr>
<td>PERINGER P.</td>
<td>26, 42, 60, 100, 119</td>
</tr>
<tr>
<td>PERNEL J.-J.</td>
<td>26</td>
</tr>
<tr>
<td>PFUNG L.</td>
<td>30, 39</td>
</tr>
<tr>
<td>PLATTNER E.</td>
<td>7</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Rappaz J.</td>
<td>22</td>
</tr>
<tr>
<td>Recordon E.</td>
<td>50, 71</td>
</tr>
<tr>
<td>Riesen A.</td>
<td>25</td>
</tr>
<tr>
<td>Sautier J.-L.</td>
<td>88, 90</td>
</tr>
<tr>
<td>Schaller R.</td>
<td>25</td>
</tr>
<tr>
<td>Schneider J.-R.</td>
<td>68, 85, 89, 112, 114</td>
</tr>
<tr>
<td>Spaccapietra S.</td>
<td>64</td>
</tr>
<tr>
<td>Steinauer P.-H.</td>
<td>107, 127</td>
</tr>
<tr>
<td>Tarradellas J.</td>
<td>43, 56; 58, 77, 96</td>
</tr>
<tr>
<td>Urech J.-D.</td>
<td>113, 114</td>
</tr>
<tr>
<td>Vallat J.</td>
<td>55, 75</td>
</tr>
<tr>
<td>Van Den Bergh H.</td>
<td>81, 101</td>
</tr>
<tr>
<td>Van Der Klink J.</td>
<td>18, 24</td>
</tr>
<tr>
<td>Vedy J.-C.</td>
<td>29, 38, 61, 66, 80, 120</td>
</tr>
<tr>
<td>Wasserfallen C.</td>
<td>86, 113</td>
</tr>
<tr>
<td>Werro F.</td>
<td>53</td>
</tr>
<tr>
<td>Wohlhauser A.</td>
<td>4, 15</td>
</tr>
<tr>
<td>Zwaahlen B.</td>
<td>2, 13</td>
</tr>
</tbody>
</table>
TABLE DES MATIERES SELON LE PLAN D'ETUDES

<table>
<thead>
<tr>
<th>Cours</th>
<th>Enseignant</th>
<th>Semestre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sciences de base :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse I, II</td>
<td>P. Buser</td>
<td>1er/2e</td>
<td>1, 12</td>
</tr>
<tr>
<td>Analyse I, II (cours en allemand)</td>
<td>B. Zwahlen</td>
<td>1er/2e</td>
<td>2, 13</td>
</tr>
<tr>
<td>Analyse III</td>
<td>J. Rappaz</td>
<td>3e</td>
<td>22</td>
</tr>
<tr>
<td>Analyse numérique</td>
<td>J. Descloux</td>
<td>4e</td>
<td>34</td>
</tr>
<tr>
<td>Algèbre linéaire I, II</td>
<td>Th. M. Liebling</td>
<td>1er/2e</td>
<td>3, 14</td>
</tr>
<tr>
<td>Géométrie I, II</td>
<td>A. Wohlauser</td>
<td>1er/2e</td>
<td>4, 15</td>
</tr>
<tr>
<td>Probabilité et statistique I, II</td>
<td>J.-M. Helbling</td>
<td>3d/4e</td>
<td>23, 35</td>
</tr>
<tr>
<td>Programmation I, II</td>
<td>B. Faltings</td>
<td>1er/2e</td>
<td>5, 16</td>
</tr>
<tr>
<td>Mécanique générale I, II</td>
<td>J.-J. Meister</td>
<td>1er/2e</td>
<td>6, 17</td>
</tr>
<tr>
<td>Physique générale I, II</td>
<td>J. Van der Klink</td>
<td>2d/3e</td>
<td>18, 24</td>
</tr>
<tr>
<td>TP de Physique générale</td>
<td>W. Benoit, G. Gremaudi, A. Riesen,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. Schaller</td>
<td>3e</td>
<td>25</td>
</tr>
<tr>
<td>Chimie appliquée</td>
<td>Ph. Javet, E. Plattner, P. Lerch</td>
<td>1er</td>
<td>7</td>
</tr>
<tr>
<td>Biologie générale</td>
<td>P. Péiringer, J.-J. Pernet</td>
<td>3e</td>
<td>26</td>
</tr>
<tr>
<td>Infographie et dessin technique</td>
<td>J.-D. Bonjour</td>
<td>1er</td>
<td>8</td>
</tr>
<tr>
<td>Sciences appliquées :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Géologie I, II</td>
<td>J.-H. Gabus</td>
<td>1er/2e</td>
<td>9, 19</td>
</tr>
<tr>
<td>Hydraulique I + II</td>
<td>W. Graf, J. Bruschin</td>
<td>3d/4e</td>
<td>27, 36</td>
</tr>
<tr>
<td>Hydrologie I, II</td>
<td>A. Musy</td>
<td>3d/5e</td>
<td>28, 47</td>
</tr>
<tr>
<td>Hydrologie III</td>
<td>A. Musy</td>
<td>8e</td>
<td>111</td>
</tr>
<tr>
<td>Physique du sol</td>
<td>A. Mermoud</td>
<td>4e</td>
<td>37</td>
</tr>
<tr>
<td>Hydraulique agricole</td>
<td>A. Musy</td>
<td>5e</td>
<td>48</td>
</tr>
<tr>
<td>Pédologie I, II, III</td>
<td>J.-C. Védy</td>
<td>3d/4e/6e</td>
<td>29, 38, 66</td>
</tr>
<tr>
<td>Agronomie générale I, II</td>
<td>J.-P. Charles</td>
<td>5e/6e</td>
<td>49, 67</td>
</tr>
<tr>
<td>Génie rural et aménagement :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remenagement parcellaire I, II, III</td>
<td>J.-R. Schneider</td>
<td>6d/7e/8e</td>
<td>68, 85, 112</td>
</tr>
<tr>
<td>Aménagement du territoire I, II</td>
<td>C. Wasserfallen, J.-D. Urech</td>
<td>7e/8e</td>
<td>86, 113</td>
</tr>
<tr>
<td>Remenagement parcellaire et</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aménagement du territoire III</td>
<td>J.-R. Schneider, J.-D. Urech</td>
<td>8e</td>
<td>114</td>
</tr>
<tr>
<td>Routes et chemins</td>
<td>R. Crottaz</td>
<td>6d/7e</td>
<td>69, 87</td>
</tr>
<tr>
<td>Equipements ruraux</td>
<td>J.-L. Sautier</td>
<td>7e</td>
<td>88</td>
</tr>
<tr>
<td>Equipements ruraux</td>
<td>A. Musy, R. Crottaz,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aménagements hydro-agricoles</td>
<td>J.-R. Schneider</td>
<td>7e</td>
<td>89</td>
</tr>
<tr>
<td>Assainissement</td>
<td>J.-L. Sautier</td>
<td>7e</td>
<td>90</td>
</tr>
<tr>
<td>Irrigation</td>
<td>A. Mermoud</td>
<td>7e</td>
<td>91</td>
</tr>
<tr>
<td>Aménagements ruraux</td>
<td>A. Musy</td>
<td>8e</td>
<td>115</td>
</tr>
<tr>
<td>Séminaires de génie rural</td>
<td>A. Musy</td>
<td>8e</td>
<td>116</td>
</tr>
<tr>
<td>Travaux de génie rural</td>
<td>A. Musy</td>
<td>7e</td>
<td>92</td>
</tr>
<tr>
<td>Construction :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mécanique des constructions I, II</td>
<td>L. Pflug</td>
<td>3d/4e</td>
<td>30, 39</td>
</tr>
<tr>
<td>Géotechnique et fondations I, II</td>
<td>E. Recordon</td>
<td>5d/6e</td>
<td>50, 71</td>
</tr>
<tr>
<td>Matériaux de construction I</td>
<td>F. Alou, V. Furlan</td>
<td>6d/7e</td>
<td>72, 93</td>
</tr>
<tr>
<td>Construction I, II, III</td>
<td>M. Miehlbradt</td>
<td>5d/6e/7e</td>
<td>51, 73, 94</td>
</tr>
<tr>
<td>Divers :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation prof. compl. I</td>
<td>L.Y. Maystre</td>
<td>3e</td>
<td>31</td>
</tr>
<tr>
<td>Formation prof. compl. II</td>
<td>G. Chevalier</td>
<td>4e</td>
<td>40</td>
</tr>
<tr>
<td>Systèmes d'information géogr.I, II</td>
<td>R. Caloz</td>
<td>4d/5e</td>
<td>41, 52</td>
</tr>
<tr>
<td>Droit I, II</td>
<td>F. Werro, N. Michel</td>
<td>5d/6e</td>
<td>53, 54, 74</td>
</tr>
<tr>
<td>HTE : Economie rurale I, II</td>
<td>J. Vallat</td>
<td>5d/6e</td>
<td>55, 75</td>
</tr>
<tr>
<td>HTE : Sociologie rurale</td>
<td>F. Haimard</td>
<td>7d/8e</td>
<td>95, 117</td>
</tr>
<tr>
<td>Cours</td>
<td>Enseignant</td>
<td>Semestre</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Milieu naturel et environnement - tronc commun :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milieu naturel I, II</td>
<td>P. Hunkeler</td>
<td>1er/2e</td>
<td>10, 20,</td>
</tr>
<tr>
<td>Biotechnologie</td>
<td>P. Péringre</td>
<td>4e</td>
<td>42</td>
</tr>
<tr>
<td>Ecologie I, II</td>
<td>J. Tarradellas</td>
<td>4e/5e</td>
<td>43, 56</td>
</tr>
<tr>
<td>Assainissement des agglomérations I, II</td>
<td>L. Y. Maystre</td>
<td>4e/5e</td>
<td>44, 57</td>
</tr>
<tr>
<td>Mensuration - tronc commun :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topographie I à IV</td>
<td>P. Howald</td>
<td>1er au 4e</td>
<td>11, 21, 32, 45</td>
</tr>
<tr>
<td>Théorie des erreurs I</td>
<td>P. Howald</td>
<td>3e</td>
<td>33</td>
</tr>
<tr>
<td>Photo-interprétation</td>
<td>O. Köbl</td>
<td>6e</td>
<td>76</td>
</tr>
<tr>
<td>Milieu naturel et environnement - Spécialisation :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualité des eaux et écotoxicologie I, II, III</td>
<td>J. Tarradellas</td>
<td>5e/6e/7e</td>
<td>58, 77, 96</td>
</tr>
<tr>
<td>Approvisionnement en eau potable</td>
<td>L.Y. Maystre</td>
<td>5e</td>
<td>59</td>
</tr>
<tr>
<td>Traitement des déchets I, II</td>
<td>L.Y. Maystre</td>
<td>6e/7e</td>
<td>78, 97</td>
</tr>
<tr>
<td>Génie sanitaire I, II</td>
<td>L.Y. Maystre</td>
<td>6e/7e</td>
<td>79, 98</td>
</tr>
<tr>
<td>Travaux de génie de l'environnement</td>
<td>L.Y. Maystre</td>
<td>7e</td>
<td>99</td>
</tr>
<tr>
<td>Construction des ouvrages de génie s</td>
<td>L.Y. Maystre</td>
<td>8e</td>
<td>118</td>
</tr>
<tr>
<td>Génie microbiologique</td>
<td>P. Péringre</td>
<td>5e</td>
<td>60</td>
</tr>
<tr>
<td>Valorisation biologique des déchets I, II</td>
<td>P. Péringre</td>
<td>7e/8e</td>
<td>100, 119</td>
</tr>
<tr>
<td>Gestion et conservations des sols</td>
<td>J.-C. Védy</td>
<td>5e</td>
<td>61</td>
</tr>
<tr>
<td>Végétation I, II</td>
<td>J.-C. Védy, P. Hainard</td>
<td>6e/8e</td>
<td>80, 120</td>
</tr>
<tr>
<td>Pollution et déposition atmosph. I, II</td>
<td>H. Van den Bergh</td>
<td>6e/7e</td>
<td>81, 101</td>
</tr>
<tr>
<td>Gestion du milieu naturel</td>
<td>P. Hunkeler</td>
<td>8e</td>
<td>121</td>
</tr>
<tr>
<td>Génie sanitaire III</td>
<td>L.Y. Maystre</td>
<td>8e</td>
<td>122</td>
</tr>
<tr>
<td>Mensuration - Spécialisation :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photogrammétrie I, II</td>
<td>O. Köbl</td>
<td>5e/6e</td>
<td>62, 82</td>
</tr>
<tr>
<td>Théorie des erreurs II</td>
<td>H. Dupraz</td>
<td>5e</td>
<td>63</td>
</tr>
<tr>
<td>Bases de données</td>
<td>S. Spaccapieta</td>
<td>5e</td>
<td>64</td>
</tr>
<tr>
<td>Systèmes d'info. du territoire, I, II</td>
<td>J.-P. Miseretz</td>
<td>5e/6e</td>
<td>65, 83</td>
</tr>
<tr>
<td>Systèmes d'information du territoire III</td>
<td>F. Golay</td>
<td>7e</td>
<td>102</td>
</tr>
<tr>
<td>Système d'information du territoire IV</td>
<td>F. Golay, O. Köbl</td>
<td>8e</td>
<td>123</td>
</tr>
<tr>
<td>Cartographie numérique</td>
<td>O. Köbl</td>
<td>7e</td>
<td>103</td>
</tr>
<tr>
<td>Mensuration cadastrale</td>
<td>A. Miseretz</td>
<td>6e</td>
<td>84</td>
</tr>
<tr>
<td>Géodésie I, II</td>
<td>A. Miseretz</td>
<td>7e/8e</td>
<td>104, 124</td>
</tr>
<tr>
<td>Topométrie appliquée I, II</td>
<td>H. Dupraz, A. Miseretz</td>
<td>7e/8e</td>
<td>105, 125</td>
</tr>
<tr>
<td>Travaux de mensuration</td>
<td>A. Miseretz</td>
<td>7e</td>
<td>106</td>
</tr>
<tr>
<td>Séminaires de mensuration</td>
<td>O. Köbl, A. Miseretz</td>
<td>8e</td>
<td>126</td>
</tr>
<tr>
<td>Droit III, IV</td>
<td>P.-H. Steinauer</td>
<td>7e/8e</td>
<td>107, 127</td>
</tr>
</tbody>
</table>

| Mathématiques (répétition) | O. Bachmann | 1er | 128 |

Campagnes :			
Campagne de Topographie I	P. Howald	4e	46
Campagne génie rural	A. Musy	7e	108
Campagne option Mensuration	A. Miseretz	7e	109
Campagne option Environnement	L.Y. Maystre	7e	110
Titre: ANALYSE I

Enseignant: P. BUSÉR, professeur EPFL, DMA

<table>
<thead>
<tr>
<th>Heures totales:</th>
<th>120</th>
<th>Par semaine:</th>
<th>Cours 4</th>
<th>Exercices 4</th>
<th>Pratique</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Génie Rural</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Mécanique</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Matériaux</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

OBJECTIFS

Etude des méthodes principales du calcul différentiel et intégral de fonctions d'une variable en vue des applications aux problèmes physiques et techniques.

CONTENU

Notions de base: nombres réels et complexes, fonctions, limite, continuité, dérivée, intégrale.
Série de Taylor. Séries entières.
Equations différentielles et ordinaires.
Méthodes numériques.
Applications géométriques et mécaniques.

FORME DE L'ENSEIGNEMENT: Ex cathedra et exercices en salle.

LIAISON AVEC D'AUTRES COURS

Préalable requis:
Préparation pour:
Titre : ANALYSIS I

Enseignant : Bruno ZWAHLEN, professeur EPFL/DMA

<table>
<thead>
<tr>
<th>Heures totales : 120</th>
<th>Par semaine :</th>
<th>Cours</th>
<th>4</th>
<th>Exercices</th>
<th>4</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Destinataires et contrôle des études :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
<td>Théoriques</td>
<td>Pratiques</td>
</tr>
<tr>
<td>Matériaux</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>G.C., G.R.</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ME, MI, MA</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DE, DP, DI</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Etude du calcul différentiel et intégral: notions, méthodes, résultats.

CONTENU/INHALT

Differential-und Integralrechnung der Funktionen einer Variablen.

- Grundbegriffe (reelle und komplexe Zahlen, Grenzwert).
- Funktionen.
- Stetigkeit.
- Ableitungen.
- Lokales Verhalten einer Funktion, Maxima und Minima.
- Die Taylorsche Entwicklung, Potenzreihen.
- Spezielle Funktionen.
- Integrale und Stammfunktionen.
- Uneigentliche Integrale.

Lineare Differentialgleichungen.

FORME DE L'ENSEIGNEMENT :

DOCUMENTATION :

Ex cathedra, exercices en salle.

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Préparation pour :
Titre: ALGEBRE LINEAIRE I

Enseignant: Prof. Th.M. LIEBLING, EPFL/DMA

<table>
<thead>
<tr>
<th>Heures totales :</th>
<th>45</th>
<th>Par semaine :</th>
<th>Cours</th>
<th>2</th>
<th>Exercices</th>
<th>1</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destinataires et contrôle des études</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section (s)</td>
<td></td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
<td>Théoriques</td>
<td>Pratiques</td>
</tr>
<tr>
<td>GENIE CIVIL</td>
<td></td>
<td>1er</td>
<td>X</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>GENIE RURAL</td>
<td></td>
<td>1er</td>
<td>X</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>MECANIQUE</td>
<td></td>
<td>1er</td>
<td>X</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>MICROTECHNIQUE</td>
<td></td>
<td>1er</td>
<td>X</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ETS</td>
<td></td>
<td>1er</td>
<td>X</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Apprendre aux futurs ingénieurs à formuler et à résoudre des problèmes d'algèbre linéaire.

CONTENU

- Systèmes d'équations linéaires et algorithme de Gauss
- Calcul matriciel, inversion des matrices, déterminants, applications
- Espaces vectoriels, bases, sous-espaces, interprétation géométrique
- Espaces associés à une matrice, rang
- Les produits scalaires généralisés, orthogonalisation de Gram Schmidt
- Approximations par la méthode des moindres carrés.

FORME DE L'ENSEIGNEMENT:

Ex cathedra, exercices en classe

DOCUMENTATION:

Polycopié

LIAISON AVEC D'AUTRES COURS

Algèbre Linéaire II, Mécanique et Physique I et II

Préalable requis:

Préparation pour:
Titre: GEOMETRIE I

Enseignant: Alfred WOHLHAUSER, professeur EPFL/DMA

Heures totales: 45 Par semaine: Cours 2 Exercices 1 Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie rural</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mécanique</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microtechnique</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th></th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Génie rural</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Mécanique</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Microtechnique</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

OBJECTIFS

Développer la vision spatiale. Résoudre des problèmes concrets à l'aide de la géométrie graphique, vectorielle et différentielle.

CONTENU

1. Géométrie vectorielle longueur, distance, droites, plans, produit scalaire, produit vectoriel, produit mixte, aire, volume, etc.

2. Transformations du plan et de l'espace

3. Axonométrie générale, orthogonale, cavalière

4. Projection stéréographique

FORME DE L'ENSEIGNEMENT: Exposé oral et exercices

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS Algèbre linéaire, Analyse, Introduction au langage graphique,

Photogrammétrie, Topographie, Infographie

Préalable requis:
Préparation pour:
Titre : PROGRAMMATION I

Enseignant : Boi FALTINGS, Professeur EPFL/DI

<table>
<thead>
<tr>
<th>Heures totales : 45</th>
<th>Par semaine : Cours 1</th>
<th>Exercices</th>
<th>Pratique 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIMIE</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>Théoriques</td>
</tr>
<tr>
<td>GR</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATERIAUX</td>
<td>3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Savoir utiliser un système informatique simple et connaître les notions de base en programmation.

CONTENU

Programmation Pascal

Utilisation d'un ordinateur, langue de commande et éditeur.

Forme d'un programme. Déclarations et instructions. Expressions arithmétiques. Types de données élémentaires. Instructions élémentaires d'entrée et sortie.

Introduction aux applications : présentation graphique, analyse numérique, simulation.

FORME DE L'ENSEIGNEMENT : Ex cathedra. Exercices sur VAX

DOCUMENTATION : Fiches polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis : ---
Préparation pour : Programmation II
Titre: MÉCANIQUE GÉNÉRALE I

Enseignant: Jean-Jacques MEISTER, Professeur EPFL/DP

Heures total : 75 Par semaine: Cours 3 Exercices Pratique 2

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREM</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Introduire les étudiants aux lois et méthodes de la physique permettant la description et la dérivation d'équations de mouvements ainsi que l'étude de l'évolution des systèmes mécaniques.

CONTENU

Introduction à la physique générale :
Physique classique et moderne; observation de l'univers et ordre de grandeur; l'espace-temps.

Espaces de configuration :
Description de la position d'un système matériel; éléments de calcul vectoriel; toreurs; centre de masse.

Cinématique :
Description du mouvement du point et du solide; étude de quelques cas simples; mouvements relatifs; Composition des vitesses et accélérations.

Dynamique :
Lois de Newton; analyse des forces et des lois phénoménologiques associées; référentiel d'intertie; équations générales du mouvement; puissance, travail, énergie; lois de conservation.

Système à 1 degré de liberté :
Mouvements oscillatoires libres, amortis et forcés; résonance

FORME DE L'ENSEIGNEMENT: Ex cathédra et exercices dirigés en classe.

DOCUMENTATION: Liste d'ouvrages recommandés et corrigés d'exercices.

LIAISON AVEC D'AUTRES COURS:
- préalable requis : bonne formation niveau maturité
- préparation pour : mécanique générale II, physique générale
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC, Mec., Electr.</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiciens, Micro-techniciens</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Acquérir ou compléter les connaissances de base en chimie générale et préparer ainsi l'accès aux enseignements ultérieurs en science et technologie moderne des matériaux.

Maîtriser le langage et la symbolique utilisés en chimie.

Illustrer le mode de pensée inductif grâce aux démonstrations présentées au cours notamment.

Servir de base aux relations interdisciplinaires; la chimie ou ses applications jouent un rôle croissant dans les sciences de l'ingénieur; le cours doit permettre au futur ingénieur de comprendre les bases de travail du chimiste et d'engager avec succès le dialogue.

CONTENU

- Structure atomique, tableau périodique, liaisons chimiques
- États de la matière, lois de base; règle de nomenclature.
- Réaction chimique; stoechiométrie, bilan énergétique; équilibres chimiques; affinités et potentiel chimique; éléments de cinétique et de photochimie
- Métaux, non-métaux; fabrication de quelques composés importants; notions de chimie industrielle.
- Introduction à la chimie organique.
- Physico-chimie de l'eau; propriétés des ions en solution; acides et bases. Oxydo-réduction, loi de Nernst, série électrochimique. L'état colloidal.

"ORME DE L'ENSEIGNEMENT: Cours ex cathédra avec démonstration; exercices en salle

DOCUMENTATION: livre PPR

JAIson aVEC D'AUTRES COURS: Formation de base, préalable aux études de propriétés de matière et des technologies. Niveau en chimie de la maturité fédérale."
OBJECTIFS

Susciter, dès le début des études, l'intérêt des étudiants pour l'informatique appliquée. Familiarisation à un système informatique convivial et à ses logiciels de base (environnement ne nécessitant aucune connaissance informatique préalable). Faire percevoir l'informatique comme un outil et non pas comme une discipline indépendante. Faciliter, dès la première année, l'intégration de l'informatique dans les autres enseignements, les exercices et les projets. Parallèlement : présentation des instruments de bureau et de dessin traditionnels.

A la fin du cours, les étudiants sauront utiliser un système informatique graphique moderne (Macintosh) et ses outils de base: • système d'exploitation, • traitement de documents, • applications de dessin, • tableur-grapheur, • gestion de données mono-fichier. Ils connaitront aussi les instruments classiques de dessin.

CONTENU

Apprentissage d’un système d’exploitation graphique multi-fenêtre :
- gestion de fichiers (icônes, fenêtres, menus...)
- techniques de base (dialogues...), accessoires de bureau, utilitaires...

Traitement de documents :
- édition, traitement de texte et de formules mathématiques
- notions de typographie et de mise en page...

Dessin assisté par ordinateur (DAO/CAO) :
- principes généraux, outils de dessins, différents types d'objets
- édition, importation/exportation de données, sorties graphiques...

Mise en œuvre d’un tableur-grapheur :
- principes généraux, formules, formatage des données, fonctions, gestion de données
- mise en forme graphique des données
- programmation dans un tableur (macro-commandes, macro-fonctions...)

Introduction aux applications de gestion de données :
- types de données, structuration de la base de données, masques de saisie et d'impression
- recherches et tris dans les données, procédures automatisques (macros)...

Connaissance et utilisation des instruments de bureau traditionnels (M. R. Pesenti) :
- outils de dessin, chablons, coordinatographes rectangulaire et polaire, planimètre, pantographe...

Introduction au langage graphique en génie civil (M. H. Gilliéron)

FORME DE L’ENSEIGNEMENT : cours et exercices pratiques

DOCUMENTATION : notes polycopiées

liaison avec d’autres cours :
Programmation, Topographie, Photogrammétrie, Mensuration cadastrale, SIG, SIT, Cartographie numérique
Titre : GEOLOGIE I

Enseignant : Jacques-H. GABUS, professeur EPFL/DGC

<table>
<thead>
<tr>
<th>Heures totales</th>
<th>30</th>
<th>Par semaine</th>
<th>Cours</th>
<th>2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destinataires et contrôle des études :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
<td>Branches</td>
<td>Théoriques</td>
</tr>
<tr>
<td>GC</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>GR</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

À la fin du cours, l'étudiant sera capable de comprendre la formation des principales familles de roches qui constituent la croûte terrestre.

CONTENU

- Structures de la Terre
- Les principaux minéraux
- Les roches endogènes
- Le volcanisme
- Les roches sédimentaires
- Le métamorphisme

FORME DE L'ENSEIGNEMENT : Ex cathedra et par moyens audio-visuels.

DOCUMENTATION : Cours polycopiés.

LIAISON AVEC D'AUTRES COURS

Préparation pour : Pédologie - Matériaux de construction - Géotechnique et fondations - Hydrologie
Titre: Milieu naturel I

Enseignant: HUNKELER Pierre - chargé de cours

<table>
<thead>
<tr>
<th>Heures total :</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>1</td>
<td>☒</td>
<td></td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Comprendre les caractéristiques et la valeur du milieu naturel, les principes de sa gestion, les interactions entre l'homme et son environnement naturel.

CONTENU

Milieu naturel et paysage
- environnement et nature
- faune, flore, habitats naturels
- écosystèmes, biotopes, écotones
- principes écologiques
- approche du paysage

Relations homme-environnement naturel
- milieux et ressources
- services fournis par les espèces et les écosystèmes
- impacts des activités humaines

Gestion et conservation du milieu naturel
- principes et objectifs
- sources de données (inventaires, listes rouges, etc)
- bases légales
- gestion, aménagement, reconstitution

FORME DE L'ENSEIGNEMENT : Ex cathédra; discussions, études de cas.

DOCUMENTATION : notes de cours, bibliographie

LIAISON AVEC D'AUTRES COURS :
Préalable requis :

Préparation pour : Milieu naturel II, Ecologie I et II, gestion du milieu naturel

Titre: TOPOGRAPHIE

Enseignant: Pierre HOWALD, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>1</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

À la fin du cours, les étudiants seront capables de:

- faire des mesures avec des instruments topographiques.
- exécuter les calculs liés aux méthodes topométriques.
- élaborer un dossier de mesures, calculs et documents, propre et bien ordonné.
- préparer et organiser l'exécution d'un travail, analyser et qualifier les résultats.

CONTENU

- Références géodésiques: coordonnées terrestres - systèmes de projection - coordonnées rectangulaires lances - canevas de points fixes - triangulation - nivellements.
- Définitions et calculs élémentaires: unités linéaires et angulaires - direction, angle horizontal, angle vertical - gisement et distance - point lancé - orientation de directions - réductions et corrections de distances.
- Mesures angulaires: théodolite - angles horizontaux - angles verticaux.
- Mesures de longueurs: méthodes directes - mire invar - stadiométrie - mesures électroniques.

ORME DE L'ENSEIGNEMENT: ex cathédra, avec démonstrations en salle.

OCUMENTATION: cours polycopié. Documentation professionnelle.

LIAISON AVEC D'AUTRES COURS:

- **étable requis:**
 - **réparation pour:** topographie II, III et IV - théorie des erreurs. Toutes les branches des mensurations.
 - ampagne de terrain
OBJECTIFS

Etude des méthodes principales du calcul différentiel et intégral de fonctions de plusieurs variables en vue des applications aux problèmes physiques et techniques.

CONTENU

Dérivation partielle et différentiabilité des fonctions de plusieurs variables.

Formules de Taylor et ses applications.

Fonctions implicites.

Intégrales doubles et triples.

Applications géométriques et mécaniques.

FORME DE L'ENSEIGNEMENT:

Ex cathedra et exercices en salle.

DOCUMENTATION:

J. Douchet & B. Zwahlen: Calcul différentiel et intégral, Vol. 2 & 4, PPR.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour:
Titre : ANALYSIS II
Enseignant : Bruno ZWAHLEN, professeur EPFL/DMA
Heures totales : 80
Par semaine : Cours 4, Exercices 4, Pratique 4

Destinataires et contrôle des études :
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches Théoriques</th>
<th>Branches Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matériaux,</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>CG, GR</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ME, MI, MA</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>DE, DP, DI</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Etude du calcul différentiel et intégral: notions, méthodes, résultats.

CONTENU/INHALT

Differential- und Integralrechnung der Funktionen mehrerer Variablen.

- Funktionen mehrerer Variablen.
- Partielle Ableitungen.
- Maxima und Minima, Extrema mit Nebenbedingungen, implizite Funktionen.
- Die Taylorsche Entwicklung.
- Mehrfache Integrale.

FORME DE L'ENSEIGNEMENT : Ex cathedra, exercices en salle.

DOCUMENTATION : Calcul différentiel et intégal II et IV, J. Douchet et B. Zwahlen, P.P.R. 1985 et 1988.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Analysis I, Algèbre linéaire I.

Préparation pour :
<table>
<thead>
<tr>
<th>Destination et contrôle des études</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENIE CIVIL</td>
<td>2e</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>GENIE RURAL</td>
<td>2e</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MECANIQUE</td>
<td>2e</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MICROTECHNIQUE</td>
<td>2e</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>ETS</td>
<td>2e</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

OBJECTIFS

Apprendre aux futurs ingénieurs à formuler et à résoudre des problèmes d'algèbre linéaire.

CONTENU

- Coordonnées et changements de base
- Les applications linéaires, noyau, image
- Les valeurs propres et les vecteurs propres, équations aux différences
- Les quadriques
- Éléments de la théorie des graphes
- Programmation linéaire et algorithme du simplexe.

FORME DE L'ENSEIGNEMENT:

Ex cathedra, exercices en classe

DOCUMENTATION:

Polycopié

LIAISON AVEC D'AUTRES COURS

Algèbre Linéaire I, Mécanique et Physique I et II

Préalable requis:

** Préparation pour:**
Titre: GEOMÉTRIE II

Enseignant: Alfred WOHLHAUSER, professeur DMA/EPFL

<table>
<thead>
<tr>
<th>Heures totales : 30</th>
<th>Par semaine :</th>
<th>Cours</th>
<th>2</th>
<th>Exercices</th>
<th>1</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil................</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie rural................</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mécanique..................</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Microtechnique............</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Développer la vision spatiale. Résoudre des problèmes concrets à l'aide de la géométrie graphique, vectorielle et différentielle.

CONTENU

5. Courbes
courbes planes et courbes dans l'espace ; courbure, torsion, repère de Frenet, ordre de contact

6. Surfaces
notion de surface, plan tangent, etc. ; surfaces réglées, surfaces de révolution ; première et deuxième forme fondamentale, courbure géodésique

7. Perspective
méthode radiale, méthode de deux points de fuite

FORME DE L’ENSEIGNEMENT: Exposé oral et exercices

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS
Algèbre linéaire, Analyse, Introduction au langage graphique, Photogrammétrie, Topographie, Infographie

Préalable requis:

Préparation pour:
Titre : PROGRAMMATION II

Enseignant : Boi FALTINGS, Professeur EPFL/DI

<table>
<thead>
<tr>
<th>Heures totales : 30</th>
<th>Par semaine :</th>
<th>Cours 1</th>
<th>Exercices</th>
<th>Pratique 2</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaissances de la programmation avancée en PASCAL, connaissances élémentaires de Fortran.

CONTENU

Programmation Fortran (surtout différences avec Pascal).

Notions du langage de commande de VMS (commandes principales, directoires, sous-directoires, protection des fichiers, noms logiques, symboles).

Utilisation de Fichiers en Pascal et Fortran.

Structures de données dynamiques.

FORME DE L'ENSEIGNEMENT : Ex cathedra. Exercices sur ordinateur VAX

DOCUMENTATION : Fiches polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis : Programmation I

Préparation pour : Divers cours et laboratoires requérant l'usage de l'ordinateur
OBJECTIFS

Amener l'étudiant à la connaissance des lois de la dynamique des systèmes matériels et à l'application de ces lois dans l'étude du mouvement et de l'équilibre.

CONTENU

Gravitation universelle :
Équivalence masse d'inertie et masse gravifique; champ gravifique; lois de Kepler.

Dynamique du solide :
Tenseur d'inertie, équations d'Euler; gyroscope.

Elements de statique :
Conditions d'équilibre; forces de réaction et tensions; position d'équilibre.

Notions de choc.

Changement de référentiel et relativité restreinte :
Principe de la relativité de Galilée; forces d'inertie et de Coriolis. Théorie relativiste : expériences fondamentales; transformations de Lorentz et conséquences.

Mécanique lagrangienne (introduction) :
Equations de d'Alembert et de Lagrange pour les systèmes holonomes.

FORME DE L'ENSEIGNEMENT: Ex cathédra et exercices dirigés en classe.

DOCUMENTATION: Liste d'ouvrages recommandés et corrigés d'exercices.

LIAISON AVEC D'AUTRES COURS:
- préalable requis : Mécanique générale I et Analyse I
- préparation pour : Physique générale
Titre : PHYSIQUE GENERALE I

Enseignant : VAN DER KLINK Jacques, chargé de cours

<table>
<thead>
<tr>
<th>Heures totales : 60</th>
<th>Par semaine :</th>
<th>Cours 4</th>
<th>Exercices 2</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destinataires et contrôle des études :</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>Section(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie Civil</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie Rural</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mécanique</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, l'étudiant possèdera les notions de base nécessaires à la compréhension des phénomènes physiques qu'il rencontrera dans sa vie professionnelle. Il sera capable de prévoir quantitativement les conséquences de ces phénomènes avec les outils mathématiques appropriés. Il possèdera en physique, une culture générale indispensable à un ingénieur de bon niveau.

CONTENU

Thermodynamique : Description microscopique d'un gaz, notion de distribution de particules. Equilibre statistique : notion de température, chaleur, entropie. Description macroscopique : variable et fonction d'état. Premier et deuxième principe, réversibilité, cycle de Carnot, cycle de machines thermiques, rendement. Étude phénoménologique des transformations de phases, gaz de Van der Waals.

Phénomènes capillaires.

Phénomènes de transport : Conducteur de chaleur, équation de diffusion, couche limite, régime non stationnaire – Rayonnement, émission, absorption, corps noir, effet serre – Convection – Diffusion matérielle.

FORME DE L'ENSEIGNEMENT : Cours donné ex cathedra illustré de nombreuses expériences et exercices.

DOCUMENTATION : Cours polycopiés. Ouvrages spécifiques précisés au cours du semestre.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Mécanique I et II.

Préparation pour :
Titre : GEOLOGIE II

Enseignant : Jacques-H. GABUS, professeur EPFL/DGC

Heures totales : 20
Par semaine : Cours 2
Exercices
Pratique

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>GR</td>
<td>2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, l'étudiant sera capable de comprendre et de reconnaître les mécanismes essentiels de l'orogenèse et de la glyptogenèse.

CONTENU

- La tectonique
- Mécanisme et conséquence des plissements
- La carte géologique
- La glyptogenèse
- Désagrégation et altération des roches
- L'érosion
- Les eaux souterraines

FORME DE L'ENSEIGNEMENT : Ex cathedra et par moyens audio-visuels.

DOCUMENTATION : Cours polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Géologie I
Préparation pour : Pédologie - Matériaux de construction - Géotechnique et fonduations
Titre: Milieu naturel II

Enseignant: HUNKELER Pierre, chargé de cours

Heures total : 20 Par semaine: Cours Exercices Pratique 2

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>2</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☒</td>
</tr>
</tbody>
</table>

OBJECTIFS

Comprendre les caractéristiques et la valeur du milieu naturel, les principes de sa gestion, les interactions entre l'homme et son environnement naturel.

CONTENU

- connaissance d'espèces de faune et de flore, de types de biotopes
- méthodes simples d'inventaire et de relevé
- utilisation de sources de données
- évaluation de quelques types de milieux et paysages
- cartographie d'éléments naturels
- études de cas d'aménagements

FORME DE L'ENSEIGNEMENT: travaux pratiques en salle et sur le terrain, séminaires

DOCUMENTATION: notes de cours, bibliographie

LIAISON AVEC D'AUTRES COURS:

Préalable requis:

Préparation pour: Ecologie I et II, gestion du milieu naturel.
Titre: TOPOGRAPHIE II

Enseignant: Pierre Howald, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 40</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices</th>
<th>Pratique 3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>2</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables de:

- faire des mesures avec des instruments topographiques.
- exécuter les calculs liés aux méthodes topométriques.
- élaborer un dossier de mesures, calculs et documents, propre et bien ordonné.
- préparer et organiser l’exécution d’un travail, analyser et qualifier les résultats.

CONTENU

6. Connaissances des instruments et méthodes à mettre en application dans les travaux pratiques.

Travaux pratiques:
- initiation à l’emploi des instruments topographiques: théodolites, tachéomètres, niveaux.
- mesures d’angles, nivellements, levé de points.

FORME DE L’ENSEIGNEMENT: exercices et travaux pratiques sur le terrain et en salle. Travaux de groupe et individuels.

DOCUMENTATION: cours polycopié. Documentation professionnelle.

LIAISON AVEC D’AUTRES COURS:
Préalable requis: topographie I
Préparation pour: topographie III et IV - théorie des erreurs. Toutes les branches des mensuration. Campagnes de terrain.

Titre: ANALYSE III

Enseignant: Jacques RAPPAZ, professeur

<table>
<thead>
<tr>
<th>Heures totales : 75</th>
<th>Par semaine: Cours 3</th>
<th>Exercices 2</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAUX</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENIE CIVIL</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENIE RURAL</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECANIQUE</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Fournir les notions principales du calcul différentiel et intégral; étude de fonctions à plusieurs variables.

CONTENU

- Champs scalaires, champs vectoriels.
- Arcs, intégrales curvilignes.
- Morceaux de surfaces, intégrales de surface.
- Étude des opérateurs gradient, divergence, rotationnel, laplacien.
- Théorèmes de Stokes, du gradient, de la divergence, du rotationnel, formules de Green.
- Coordonnées cylindriques, sphériques. Opérateurs gradient, divergence, rotationnel et laplacien dans ces coordonnées.
- Équations différentielles, équations aux dérivées partielles du 2ème ordre.
- Séries de Fourier.
- Résolution numérique de problèmes aux limites.

FORME DE L’ENSEIGNEMENT: Ex cathedra, avec exercices en salle.

DOCUMENTATION: N. Piskounov : Calcul différentiel et intégral, vol. 1 et 2, Ed. Mir, Moscou.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Analyse I et II. Algèbre linéaire I et II.

Préparation pour:
Titre: PROBABILITÉ ET STATISTIQUE I

Enseignant: J.-M. Helbling, chargé de cours EPFL/DMA

<table>
<thead>
<tr>
<th>Heures totales : 45</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Destinataires et contrôle des études</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Théoriques</td>
</tr>
<tr>
<td>Génie Civil</td>
<td>x</td>
</tr>
<tr>
<td>Génie Rural</td>
<td>x</td>
</tr>
<tr>
<td>Mécanique, Physique</td>
<td>x</td>
</tr>
<tr>
<td>Mécanique, ETS</td>
<td>x</td>
</tr>
</tbody>
</table>

OBJECTIFS

Familiariser l'étudiant aux concepts fondamentaux des probabilités et des statistiques. Au terme du cours, l'étudiant devrait avoir assimilé ces concepts et ainsi pouvoir les utiliser.

CONTENU

- **Probabilités** :
 Révision des notions de base.

- **Variables aléatoires** :
 Définition, moyenne, variance, covariance, corrélation, transformation.

- **Lois discrètes** :
 Bernoulli, binomiale, hypergéométrique, Poisson, géométrique.

- **Lois continues** :
 Normale, Gamma, exponentielle, chi-carré, F, t.

- **Théorie de probabilité** :
 Théorème central limite, approximations par la loi normale.

- **Estimation** :
 Distributions d'échantillonnage, estimation ponctuelle, biais, carré moyen de l'erreur, estimateurs du maximum de vraisemblance, estimateurs par la méthode des moments, méthode des moindres carrés, estimation par intervalle.

- **Tests d'hypothèses** :
 Erreurs de 1ère et 2ème espèces, puissance d'un test, tests basés sur la loi normale, test t et test F pour un modèle linéaire, test du chi-carré.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra et exercices en classe

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour: Statistique appliquée et cours professionnels utilisant les statistiques.
Titre: PHYSIQUE GENERALE II

Enseignant: VAN DER KLINK Jacques, chargé de cours

Heures totales: 75
Par semaine: Cours 3 Exercices 2 Pratique

Destinataires et contrôle des études:

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie Civil</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie Rural</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mécanique</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, l'étudiant possédera les notions de base nécessaires à la compréhension des phénomènes physiques qu'il rencontrera dans sa vie professionnelle. Il sera capable de prévoir quantitativement les conséquences de ces phénomènes avec les outils mathématiques appropriés. Il possèdera en physique, une culture générale indispensable à un ingénieur de bon niveau.

CONTENU

Electricité et magnétisme:
Electrostatique, champ électrique, potentiel, lois générales, conducteurs, capacité, applications – Courants électriques stationnaires, résistivité, loi d'Ohm, puissance, circuits simples – Magnétostatique, champ d'induction B, lois générales, galvanomètre – Induction électromagnétique, loi d'induction B, courants de Foucault, self-induction et induction mutuelle, transformateur.
Circuits électriques, circuit RC, RL, LC, RLC, régime sinusoidal, tensions tri et monophasées – Champs magnétiques et électriques dans la matière, électro-aimant.

Phénomènes ondulatoires:

FORME DE L'ENSEIGNEMENT: Cours donné ex cathedra illustré de nombreuses expériences et exercices.

DOCUMENTATION: Cours polycopiés. Ouvrages spécifiques précisés au cours du semestre.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Mécanique I et II.
Préparation pour:
Titre : TRAVAUX PRATIQUES DE MECANIQUE GENERALE ET PHYSIQUE GENERALE I ET II

Heures totales : 30 Par semaine : Cours Exercices Pratique 2

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie rural</td>
<td>3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie Civil</td>
<td>3</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

OBJECTIFS
Les étudiants pourront acquérir la connaissance des phénomènes physiques de base ainsi que de leurs applications. L'accent sera mis sur l'assimilation de synthèse (phénomènes classés dans des chapitres différents, mais obéissant aux mêmes lois) ainsi que sur les méthodes d'observation et de mesure et la manipulation d'appareils et d'instruments. Le sens de l'initiative et la créativité sont encouragés.

CONTENU
En rapport avec le contenu des cours de mécanique et de physique des sections concernées.

En rapport avec certains enseignements de base dispensés par les départements concernés.

FORME DE L'ENSEIGNEMENT : en laboratoire, à raison de 4 h 00 toutes les 2 semaines

DOCUMENTATION : notes polycopiées, bibliothèque spécialisée à disposition

LIAISON AVEC D'AUTRES COURS cours de mathématique, mécanique générale et physique générale

Préalable requis :
Préparation pour :
Titre: Biologie générale

Enseignant: PERINGER Paul, prof. EPFL / PERNET J. Jacques, prof. UNIL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>3</td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Première partie: comprendre et assimiler les principes d'organisation et de fonctionnement biochimique des cellules eucaryotes en général (Prof. Pernet).

Deuxième partie: comprendre et savoir interpréter les actions biochimiques, les principaux mécanismes de fonctionnement et de reproduction de la cellule procaryote en général et de leur culture en bioréacteurs (Prof. Péringer).

CONTENU

Première partie

La cellule eucaryote en général - Constituants principaux.

Problèmes métaboliques - Réactions énergétiques, enzymatiques et physico-chimiques.

Ultrastructure fonctionnelle - Le plasmalemme et les membranes.

Les dictyosomes et l'appareil de Golgi - L'appareil vacuolaire et les échanges.

Les chloroplastes et la photosynthèse - Les mitochondries et le catabolisme.

Deuxième partie

Introduction au Génie microbiologique.

Constituants majeurs de la cellule microbienne.

Structure et organisation des micro-organismes.

Fonctionnement de la cellule procaryote.

Catalyse biologique - Enzymes et cinétiques enzymatiques michaéliennes.

Métabolisme énergétique - Notions de bioénergétique.

Les types trophiques.

Cinétiques microbiennes.

Techniques de culture et procédés microbiologiques.

FORME DE L'ENSEIGNEMENT: Ex cathédra.

DOCUMENTATION: notes polycopiées

LIAISON AVEC D'AUTRES COURS:
Titre : HYDRAULIQUE I

Enseignant : Walter H. GRAF, Professeur EPFL/DGC

Heures totales : 60

Par semaine : Cours 2 Exercices 1 Pratique 1

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENIE CIVIL</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENIE RURAL</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

OBJECTIFS

Introduction à l'hydrodynamique des liquides parfaits et réels.

CONTENU

INTRODUCTION : généralités, lois de conservation, unités de mesure, propriétés.

HYDROCINEMATIQUE : mouvement d'un fluide, équation de continuité, fonction du courant, écoulement irrotationnel, potentiel de vitesse, écoulement potentiel, quelques écoulements planes; exercices.

HYDROSTATIQUE : pression en un point, équations de l'hydrostatique, variation verticale de la pression, mesure de pression, forces hydrostatiques sur des parois, forces hydrostatiques sur des corps immergés, hydrostatique dans d'autres champs de force; exercices.

HYDRODYNAMIQUE DES LIQUIDES PARFAITS : équations de l'hydrodynamique, équations de continuité, équations intrinsèques, équation de Bernoulli, équation de l'énergie, équation de la quantité de mouvement, concept du volume de contrôle, mesure de vitesse, mesure de débit, quelques applications (formule de Torricelli, phénomène de Venturi, écoulement à vortex, écoulement non permanent, changement de direction, changement de section); exercices.

HYDRODYNAMIQUE DES LIQUIDES REELS : équations de l'hydrodynamique pour écoulement laminaire, quelques écoulements laminaires (écoulement dans une conduite cylindrique, écoulement entre deux plaques parallèles, écoulement rampant), expérience de Reynolds, turbulence, équations de l'hydrodynamique pour écoulement turbulent, répartition de vitesse, similitude des écoulements; exercices.

ORME DE L'ENSEIGNEMENT : Cours ex cathedra avec polycopiés

DOCUMENTATION : Polycopiés et livres de référence

AJAISON AVEC D'AUTRES COURS

réelable requis : Physique, Mécanique
réparation pour : Constructions hydrauliques
OBJECTIFS

Connaître et comprendre les principales composantes du cycle de l'eau, leur mesure et leurs interactions et savoir analyser et traiter les données acquises en vue de leur utilisation pour les besoins du Génie rural et du Génie de l'environnement.

CONTENU

- Le cycle de l'eau et son importance.
- Le bilan hydrologique.
- Le bassin versant et sa réaction.
- Les composantes du bilan-type, nature et technique de mesure.
- Les réseaux d'observation et le traitement primaire des données.
- Le comportement hydrologique d'un système.

FORME DE L'ENSEIGNEMENT : Ex cathédra et démonstration.

DOCUMENTATION : Cours polycopié, documents annexes.

LIAISON AVEC D'AUTRES COURS : Hydraulique, Hydrologie II et III, Probabilités et statistiques, Génie rural et sciences de l'environnement.
OBJECTIFS

Les constituants du sol: nature et genèse, propriétés fonctionnelles

CONTENU

Approche visuelle et tactile de l'écosystème sol-vegetation
Nature des constituants du sol: minéraux argileux, fer et aluminium, substances humiques, solution du sol, atmosphère du sol
Genèse des constituants du sol: argilogenèse, biochimie de l'humification
Propriétés fonctionnelles: pH et pouvoir tampon, complexe d'échange cationique, texture et analyse granulométrique, structure et microstructure

FORME DE L'ENSEIGNEMENT: Cours ex cathédra; travaux de laboratoire, tournées de terrain.

DOCUMENTATION: cours polycopiés, documents annexes

liaison avec d'autres cours:
Préalable requis : géologie, chimie
Préparation pour : pédologie II, gestion et conservation des sols, pédologie III, végétation I,
diverses formations GR, GE
Titre : MECANIQUE DES CONSTRUCTIONS I

Enseignant : Léopold PFLUG, professeur DGC/EPFL

<table>
<thead>
<tr>
<th>Heures totales : 45</th>
<th>Par semaine :</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>3</td>
<td>×</td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Appliquer les connaissances de la mécanique à la détermination du comportement des éléments d’une construction et celles des matériaux pour leur dimensionnement.

Le cours "mécanique des constructions" comporte deux volets :

I Statique : analyser l'équilibre des solides et des efforts intérieurs dans ceux-ci.

II Résistance des matériaux : Etudier le comportement des éléments de construction sous charge, leur résistance, leur stabilité et leur déformation.

CONTENU

I Statique :
- Introduction à la mécanique des constructions, historique.
- Équilibre des forces et des solides, efforts intérieurs dans un solide, ligne d'influence des systèmes isostatiques, systèmes réticulés.

FORME DE L'ENSEIGNEMENT : Ex cathedra. Exercices en salle.

DOCUMENTATION : Résumé du cours par fascicules polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Analyse, algèbre linéaire, mécanique, géométrie descriptive.

Préparation pour : Béton armé, constructions métalliques et bois.
OBJECTIFS

- Savoir utiliser les relations fondamentales de la mathématique financière
- Savoir calculer le coût approximatif d’un équipement technique projeté
- Savoir comparer entre elles des variantes de projet, au plan financier
- Savoir rédiger un rapport présentant les aspects financiers et techniques de la gestion
des déchets d’une entreprise.

CONTENU

Bases des mathématiques financières: formules fondamentales, taux d’intérêt, durées
d’amortissement, formules d’amortissement, effets du renchérissement.
Bases de l’analyse financière: dépenses uniques et récurrentes, fixes et proportionnelles, recettes
Capacité nominale et coût moyen spécifique
La loi des économies d’échelle
Méthodes de comparaisons de variantes: la valeur actualisée, le taux de rendement, le point mort
Exemples de comparaisons de variantes
La description systémique de la gestion des déchets: stockages, transports, traitements
Estimations financières des opérations de la gestion des déchets
Règles de comportement pour une enquête
Règles de conception d’un rapport.

Le cours comporte un projet dont la note compte comme branche pratique pour l’examen propédeutique II.
Le projet consiste en une enquête et un rapport sur les aspects financiers et techniques de la gestion des
déchets (solides, liquides ou gazeux) d’une entreprise privée ou publique.

ORME DE L’ENSEIGNEMENT: Cours, séminaires de projet

OCUMENTATION: "Introduction aux calculs économiques pour les ingénieurs", Maystre, PPR,
exercices et leurs corrigés, - Fiches d'instruction

aison AVEC D'AUTRES COURS: –
àparation pour: Génie sanitaire I , Formation complémentaire II
Titre: TOPOGRAPHIE III

Enseignant: Pierre HOWALD, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total: 30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables de:

- faire des mesures avec des instruments topographiques,
- exécuter les calculs liés aux méthodes topométriques,
- élaborer un dossier de mesures, calculs et documents, propre et bien ordonné.
- préparer et organiser l'exécution d'un travail, analyser et qualifier les résultats.

CONTENU

9. Levé de plans topographiques, de profils.

10. Implantations: calcul et piquetage d'alignements, de cercle, de clothoïdes.

11. Connaissance et emploi d'équipements électroniques:
- mesures électroniques des distances
- théodolites et tachéomètres électroniques
- enregistrements des mesures.

FORME DE L'ENSEIGNEMENT: ex cathédra, avec démonstrations.

DOCUMENTATION: cours polycopiés et documentation professionnelle.

LIAISON AVEC D'AUTRES COURS:
Préalable requis: topographie I et II.
Préparation pour: topographie IV et toutes les branches des mensurations. Campagnes de terrain.
Titre: THÉORIE DES ERREURS I

Enseignant: Pierre HOWALD, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>3</td>
<td>☑</td>
<td></td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

OBJECTIFS

À la fin du cours, les étudiants seront capables de:

- appliquer les méthodes classiques de la théorie des erreurs aux opérations et problèmes topographiques courants

ONTENU

Généralités et définitions des types d'erreurs
- Mesures d'égales et inégales précision - poids
- Observations indépendantes et corrélées
- Propagation des erreurs
- Compensations d'observations directes, d'observations médiates et d'observations conditionnelles.
- Compensation d'un point de triangulation - ellipse d'erreur moyenne
- Compensation de petits réseaux
- Transformation de Helmert
- Applications

ORME DE L'ENSEIGNEMENT: ex cathédra.

DOCUMENTATION: cours et fiches polycopiés.

LAISON AVEC D'AUTRES COURS:
- préalable requis: topographie I et II - analyse I et II - algèbre linéaire I et II.
- préparation pour: topographie III et IV - théorie des erreurs II. Toutes les branches des mensurations. Campagnes de terrain.
Titre : ANALYSE NUMERIQUE

Enseignant : Jean DESCLoux, professeur EPFL/DMA

Heures total : 30 Par semaine : cours 2 Exercices 1 Pratiques

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Sections (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie civil</td>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie rural</td>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mécanique</td>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physique</td>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

OBJECTIFS

L'étudiant apprendra à résoudre pratiquement divers problèmes mathématiques susceptibles de se poser aux ingénieurs.

CONTENU

Titre : PROBABILITÉS ET STATISTIQUE II

Enseignant : J.-M. HELBLING, chargé de cours

<table>
<thead>
<tr>
<th>Heures totales : 44</th>
<th>Par semaine : Cours 2</th>
<th>Exercices 2</th>
<th>Pratique</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Destinataires et contrôle des études</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie Rural</td>
<td>4e</td>
<td>X</td>
<td></td>
<td></td>
<td>Théoriques X Pratiques</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
Montrer le rôle des statistiques dans certaines disciplines du génie rural, telles que : hydrologie, agrométéorologie, pédologie, génie de l'environnement, mensuration, etc. Au terme du cours, l'étudiant devra être capable d'appliquer les méthodes présentées aux problèmes de l'ingénieur qui requièrent une approche statistique.

CONTENU
Régression : modèle linéaire, inférence, analyse des résidus, régression pondérée, prévision.
Analyse de variance : modèle à 1 facteur, modèle à 2 facteurs avec et sans interactions, modèles factoriels, autres plans d'expérience.
Méthodes non paramétriques : test du signe, tests de Wilcoxon I et II, corrélation de rangs, test des séquences, test de Kolmogorov-Smirnov.
Méthodes multivariées : analyse en composantes principales, discrimination.
Le cours sera complété par la présentation de quelques cas concrets.

FORME DE L'ENSEIGNEMENT : cours ex cathedra, exercices en classe, applications numériques au moyen de logiciels statistiques

DOCUMENTATION : cours polycopié

LIAISON AVEC D'AUTRES COURS :
Préalable requis : Probabilités et Statistique I
Préparation pour : Théorie des erreurs II, hydrologie générale
Titre : HYDRAULIQUE II

Enseignant : J. BRUSCHIN, professeur

Heures totales : 40

Par semaine : Cours 2 Exercices 1 Pratique 1

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie rural</td>
<td>4</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

OBJECTIFS

Faire connaître aux étudiants les voies d’approche et les solutions proposées au problème des écoulements en charge et en nappe libre (transport de l’eau). Leur faire maîtriser les outils de la pratique des ingénieur dans ces domaines.

CONTENU

FORME DE L'ENSEIGNEMENT : Ex cathedra, EAO, exercices et laboratoire

DOCUMENTATION : Polycopié, données pour exercices, instructions pour EAO et laboratoire, bibliographie.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Hydraulique I.

Préparation pour : Hydraulique agricole, Hydrologie, Aménagements hydrauliques, Génie sanitaire.
Titre: PHYSIQUE DU SOL

Enseignant: MERMOUD André, chargé de cours

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s):</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GREM</td>
<td>4</td>
<td>☒</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître et comprendre le comportement du sol, de l'eau et des solutés en liaison avec ses caractéristiques, ses constituants, ses états, son utilisation et son occupation.

CONTENU

- La phase solide (rappel).
- La phase liquide - état et mouvement de l'eau en milieu variablement saturé.
- La phase gazeuse.
- Les mouvements associés (solutés, chaleur).
- Comportement physique et hydrodynamique des sols cultivés ou non.
- Les bilans hydrique et énergétique du sol.

FORME DE L'ENSEIGNEMENT

Ex cathédra, exercices et laboratoire.

DOCUMENTATION

Cours polycopiés, documents annexes.

LIAISON AVEC D'AUTRES COURS

Pédologie I, Physique générale, Hydraulique, Hydraulique agricole, Génie rural et Sciences de l'environnement.
Titre: PÉDOLGIE II

Enseignant: J.C. VEDY, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total: 20</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices</th>
<th>Pratique 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GREM</td>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Genèse et fonctionnement des principales couvertures pédologiques

CONTENU

Les facteurs de la pédogenèse
Les grands processus de la pédogenèse
Les huvisols, les sols calcimagnésiques, les brunisols, les luvisols, les sols hydromorphes et les histosols

FORME DE L'ENSEIGNEMENT: Cours ex cathédra; travaux de laboratoire, tournées de terrain.

DOCUMENTATION: cours polycopiés, documents annexes

LIAISON AVEC D'AUTRES COURS:
Préalable requis : géologie, chimie, pédologie I
Préparation pour : gestion et conservation des sols, pédologie III, végétation I, diverses formations GR et GE,
OBJECTIFS

Appliquer les connaissances de la mécanique à la détermination du comportement des éléments d'une construction et celles des matériaux pour leur dimensionnement.

Le cours "mécanique des constructions" comporte deux volets :

I Statique : analyser l'équilibre des solides et des efforts intérieurs dans ceux-ci.

II Résistance des matériaux : Etudier le comportement des éléments de construction sous charge, leur résistance, leur stabilité et leur déformation.

CONTENU

II Résistance des matériaux :
- Caractéristiques géométriques des surfaces, propriétés élastiques des matériaux, états des contraintes.
- Traction et compression, cisaillement, torsion, flexion.
- Instabilité et déformations.
- Systèmes hyperstatiques.

FORME DE L'ENSEIGNEMENT : Ex cathedra. Exercices en salle.

DOCUMENTATION : Résumé du cours par fascicules polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Mécanique des constructions I.
Préparation pour : Béton armé, constructions métalliques et bois.
Titre: Formation professionnelle complémentaire II

Enseignant: CHEVALIER Gérard, chargé de cours

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section(s) | **Semestre** | **Oblig.** | **Facult.** | **Option** | **Branches** | **Théoriques** | **Pratiques** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>4</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Mettre les étudiants en contact avec divers aspects de la profession d'ingénieur en ce qui concerne l'organisation d'études et de travaux

CONTENU

- Les relations de l'ingénieur avec ses partenaires professionnels
- Planification et organisation des études
- Planification et organisation de travaux
- Structure et formation des prix
- Le bureau d'ingénieur
- Travaux à l'étranger, dans les pays en voie de développement
- Autres thèmes, selon les circonstances

FORME DE L'ENSEIGNEMENT: Cours, séminaires, visites

DOCUMENTATION: articles et documentation

LIAISON AVEC D'AUTRES COURS:
- Préalable requis: Formation professionnelle complémentaire I
- Préparation pour: Projets de 4ème année
OBJECTIFS

- Endre l'élève capable :
 - d'identifier les composantes d'un Système d'information géographique (SIG) orienté vers les besoins de l'ingénieur,
 - d'évaluer la problématique de chacune d'elles,
 - de concevoir un SIG et d'évaluer les conditions de réalisation,
 - d'exploiter des images satellites pour, notamment, la détermination de l'occupation du sol.

ONTENU

Introduction aux bases de données à référence spatiale.
Introduction à la télédétection satellitaire.
Base de données cartographiques.
Base de données numériques.

ORME DE L'ENSEIGNEMENT : Ex cathédra, discussion et démonstration.

DOCUMENTATION : Notes photocopiées.

LAISON AVEC D'AUTRES COURS : SIG II, SIT I, Infographie, Banque de données Hydrologie.
Titre: Introduction à la Biotechnologie

Enseignant: PERINGER Paul, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total :</th>
<th>30</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
<td>Théoriques</td>
</tr>
<tr>
<td>GR</td>
<td>4</td>
<td>✗</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
</tbody>
</table>

OBJECTIFS

Introduire les étudiants dans les divers domaines d'application de la biotechnologie en leur montrant, par de nombreux exemples concrets, l'importance de cette science de l'ingénieur dans la gestion de l'Environnement et dans la production industrielle.

CONTENU

Définition, historique et situation actuelle de la biotechnologie

Principes de base de la bioingénierie

Exemples d'application du génie biologique

Biotechnologie industrielle - Production de biens
 - Alimentation humaine
 - Agriculture et lutte biologique
 - Chimie et biochimie
 - Santé et pharmacie

Biotechnologie environnementale - Production de services
 - Epuration des eaux résiduaires et des effluents industriels
 - Élimination des déchets solides en décharge contrôlée
 - Valorisation agricole, alimentaire et énergétique des déchets organiques
 - Biodégradation des substances polluantes et xénobiotiques
 - Bioaccumulation et biolixiviation des métaux
 - Corrosions bactériennes

FORME DE L'ENSEIGNEMENT: Ex cathedra

DOCUMENTATION: Notes polycopiées

LIAISON AVEC D'AUTRES COURS : Biologie générale, Génie biologique, Valorisation et élimination biologique des déchets, Traitement des déchets
OBJECTIFS
A la fin du cours, les étudiants seront capables:
- de comprendre la circulation de l'énergie et la matière dans les écosystèmes terrestres et son impact sur les pratiques agricoles.

CONTENU
- Notions de biosphère, de milieu, d'écosystème, de biotope et de biocénose. Principaux facteurs abiotiques et biotiques. Étude de la biosphère, définition, structure, genèse de la vie sur la terre. État actuel de biosphère, évolution démographique, catastrophes naturelles.
- Les cycles biogéochimiques: les éléments biogènes, les catégories trophiques, autotrophes, hétérotrophes, consommateurs et décomposeurs.

FORME DE L'ENSEIGNEMENT: Ex cathédra et visite sur le terrain.

DOCUMENTATION: graphiques et tableaux polycopiés.

LIAISON AVEC D'AUTRES COURS: - Biologie, - Milieu naturel I et II, - Écologie II, - Gestion et conservation des sols, - Qualité des eaux et écotoxicologie I, II et III.
OBJECTIFS

Connaître et savoir appliquer les connaissances d'hydrologie urbaine et de qualité et quantité des eaux usées dans l'analyse du système général d'évacuation des eaux.

CONTENU

- Introduction au génie sanitaire
- Qualité et quantité des eaux d'approvisionnement des eaux usées et météoriques
- Systèmes d'assainissement (tout-à-l'égout, unitaire, séparatif)
- Bases de dimensionnement
- Hydrologie urbaine

FORME DE L'ENSEIGNEMENT: Cours illustré d'exercices faits en classe

DOCUMENTATION: fiches polycopiées, "Les réseaux d'assainissement", Bourrier TEC DOC

LIAISON AVEC D'AUTRES COURS:

- Préalable requis: - Hydraulique II GR4, -Hydrologie I GR3
- Préparation pour: - Assainissement des agglomérations II GR5, -Génie sanitaire I GR 6, - Traitement des déchets I, GR6
<table>
<thead>
<tr>
<th>Titre: TOPOGRAPHIE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: Pierre HOWALD, professeur EPFL</td>
</tr>
<tr>
<td>Heures total : 40</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Section(s)</td>
</tr>
<tr>
<td>GR</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables de:

- faire des mesures avec des instruments topographiques.
- exécuter les calculs liés aux méthodes topométriques.
- élaborer un dossier de mesures, calculs et documents, propre et bien ordonné.
- préparer et organiser l’exécution d’un travail, analyser et qualifier les résultats.

CONTENU

12. Connaissance des équipements et méthodes à mettre en application dans les travaux pratiques.

Travaux pratiques:
- déterminations trigonométriques de points
- levés de détail
- petits réseaux de nivellement
- implantations.

FORME DE L’ENSEIGNEMENT: exercices et travaux pratiques sur le terrain et en salle. Travaux de groupes et individuels.

DOCUMENTATION: cours photocopiés et documentation professionnelle.

LIAISON AVEC D’AUTRES COURS:
Préalable requis: topographie I, II et III - théorie des erreurs I.
Préparation pour: toutes les branches des mensurations Campagnes de terrain.
OBJECTIFS

A la fin de la campagne, les objectifs formulés pour les cours de Topographie I, II, III et IV seront encore mieux atteints, car les étudiants auront acquis l'expérience d'une activité topographique dans les conditions réelles de la pratique, ainsi que le sens du terrain.

CONTENU

Sur un site approprié, chaque groupe de deux ou trois étudiants exécute un levé topographique d'une zone de quelques hectares. Le travail, complet pour chaque groupe, comporte la reconnaissance, l'implantation et la détermination des points de base, puis le levé de détail et l'établissement du plan.

FORME DE L'ENSEIGNEMENT: deux semaines après le semestre d'été. Travail pratique de groupe.

DOCUMENTATION: toutes données techniques nécessaires à l'exécution du travail.

LIAISON AVEC D'AUTRES COURS:
Préalable requis: topographie I, II, III et IV - théorie des erreurs I.
Préparation pour: toutes les branches des mensurations. Les autres campagnes de terrain.
Titre: HYDROLOGIE II

<table>
<thead>
<tr>
<th>Enseignant:</th>
<th>MUSY André, Professeur EPFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heures total:</td>
<td>20</td>
</tr>
<tr>
<td>Par semaine:</td>
<td>Cours 1 Exercices 1 Pratique</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>GREM</td>
<td>5</td>
</tr>
</tbody>
</table>

OBJECTIFS

Approfondir les connaissances dans ce domaine pour mieux évaluer les paramètres utiles au dimensionnement d'ouvrages hydrauliques du Génie rural et du Génie de l'environnement, compte tenu du nombre et de la nature des informations disponibles.

CONTENU

- Hydrologie et aménagement hydro-agricole - rapport de dépendance, évaluation des risques, choix des paramètres.
- La réponse hydrologique du bassin versant - fonction de production.
- Relation pluie-débit - fonction de transfert.
- Prédétermination des débits de crues - formules empiriques, analyse fréquentielle, méthode du Gradex.
- Modélisation hydrologique - type de modèles, structure, mise en oeuvre, application.
- Analyse des étages - prévision et prédétermination, aspects légaux.
- Critère de choix et règle de décision pour le dimensionnement d'ouvrages hydrauliques du Génie rural et du Génie de l'environnement.

ORME DE L'ENSEIGNEMENT

- Ex cathédra, exercices en salle et sur PC.

DOCUMENTATION

- Notes diverses.

AJAISON AVEC D'AUTRES COURS

- Hydrologie I et III, Aménagements et équipements ruraux.
<table>
<thead>
<tr>
<th>Titre:</th>
<th>HYDRAULIQUE AGRICOLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>MUSY André, professeur EPFL</td>
</tr>
<tr>
<td>Heures total :</td>
<td>60</td>
</tr>
<tr>
<td>Par semaine:</td>
<td>Cours 2 Exercices 2 Pratique</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>GREM</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître les principes de base régissant la dynamique de l'eau du sol, ses interactions avec le végétal et l'atmosphère ainsi que les fondements scientifiques du contrôle de l'équilibre hydrique d'un sol en fonction de sa vocation et du climat. Savoir déterminer en laboratoire les caractéristiques des eaux et des sols utiles à la conception des ouvrages du Génie rural.

CONTENU

- Besoins, utilisation et gestion de l'eau en milieu rural.
- La circulation naturelle des eaux dans le sol :
 - infiltration,
 - redistribution,
 - percolation, alimentation de base, remontée capillaire.
- Le contrôle des eaux pour l'agriculture.
- Le comportement hydraulique vers les ouvrages de captage :
 - régime permanent et variable,
 - sols homogène et isotrope / hétérogène et anisotope,
 - puits, fossés, canaux, drains par tuyau.
- Les mouvements associés (sels, température, etc.).
- La pratique des mesures en laboratoire.

FORME DE L'ENSEIGNEMENT : Ex cathédra, exercices et laboratoire.

DOCUMENTATION : Cours polydips et notes diverses

Titre: AGRONOMIE GÉNÉRALE I
Enseignant: CHARLES Jean-Paul, chargé de cours

Heures total: 30
Par semaine: Cours 2 Exercices Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td></td>
<td>☒</td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS
Acquérir ou compléter les connaissances de base sur la croissance des principaux végétaux cultivés et exploités, leurs besoins, les techniques et pratiques culturales, les principaux systèmes de production en agriculture.

CONTENU
- Éléments de morphologie et de physiologie végétales
- Croissance et développement des plantes
- Classification des végétaux et principales plantes cultivées
- Principaux facteurs de la production végétale et leurs interactions: sol, climat, nutrition, variétés, techniques culturales, protection

FORME DE L'ENSEIGNEMENT: ex cathedra

DOCUMENTATION: notes de cours, documents annexes, bibliographie

LAISON AVEC D'AUTRES COURS: Biologie générale, Biotechnologie, Écologie, Milieu naturel, Economie rurale, divers cours sur les sciences du sol
Titre : GEOTECHNIQUE ET FONDATIONS I

Enseignant : Edouard RECORDON, professeur EPFL

Heures total : 30

<table>
<thead>
<tr>
<th>Destinataires et contrôle des études :</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sections (s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>GREM</td>
<td>5........</td>
</tr>
<tr>
<td></td>
<td>.........</td>
</tr>
<tr>
<td></td>
<td>.........</td>
</tr>
<tr>
<td></td>
<td>.........</td>
</tr>
</tbody>
</table>

OBJECTIFS
Identifier les divers types de sols et évaluer leurs caractéristiques sur la base d'un examen de chantier. Décrire les difficultés constructives dont ils peuvent être cause. Décrire le comportement des fondations d'ouvrages, des ouvrages de soutènement et de drainage, les travaux de terrassement et les problèmes liés à la stabilité des pentes dans l'optique des questions qui se posent à un ingénieur du génie rural. Faire les calculs qui permettent de chiffrer les ordres de grandeur par des méthodes simples.

CONTENU

Technologie : Nature d'un sol - Les divers types de sols - L'eau dans le terrain - Compactage et force portante - Déformabilité - Résistance au cisaillement - Valeurs des paramètres géotechniques

Fondations : Travaux d'excavation et de remblayage - Fondations superficielles - Fondation des chemins A.F. - Ecrans de soutènement - Stabilité des pentes - Fouilles et canaux de drainage

FORME DE L'ENSEIGNEMENT : Ex cathedra avec exemples numériques, traités en classe pour l'essentiel, illustrant les sujets principaux, et démonstrations en laboratoire

DOCUMENTATION : Cours polycopiés de technologie des sols (GC) et de géotechnique et fondations (GR)

LIAISON AVEC D'AUTRES COURS : Préalable requis : Géologie, résistance des matériaux, hydraulique
Préparation pour : Voies de circulation, construction, aménagements agricoles et des eaux et génie rural
Titre: CONSTRUCTION I

Enseignant: Manfred MIEHLBRADT, chargé de cours

Heures totales: 45
Par semaine: Cours 1 Exercices 1 Pratique 1

Destinataires et contrôle des études:

Section(s) Semestre Oblig. Facult. Option Branches Théoriques Pratiques
Génie Rural 5 ✗
.................................
.................................
.................................

OBJECTIFS

L'étudiant doit être capable de concevoir des structures simples et courantes, et de calculer et dessiner leurs éléments constitutifs.

CONTENU

Modélisation d'une structure et systèmes porteurs (statique appliquée)

Conception de la sécurité et actions à considérer

Initiation à la construction en béton armé
 · technologie (notions de base)
 · descente de charges
 · colonnes et semelles de fondation

Initiation à la construction en bois
 · technologie (notions de base)
 · poutres sur appuis simples et colonnes
 · exemple d'un assemblage

Initiation à la construction métallique
 · plasticité, stabilité, soudage
 · exemple d'un cadre (traverse, colonnes, assemblages)

Construction en béton armé
 · calcul des sections (flexion simple et composée, effort tranchant)
 · détails de construction (disposition des armatures)
 · éléments linéaires (poutres, colonnes)
 · aptitude au service (fissuration, déformation)

ORME DE L'ENSEIGNEMENT: Cours ex cathedra; exercices en salle.

OCUMULATION: Polycopiés; documentation professionnelle.

IAISON AVEC D'AUTRES COURS

réalable requis: Mécanique de la construction I et II
réparation pour: Construction II
<table>
<thead>
<tr>
<th>Titre:</th>
<th>SYSTEME D'INFORMATION GEOGRAPHIQUE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>CALOZ Régis, chargé de cours</td>
</tr>
<tr>
<td>Heures total:</td>
<td>30</td>
</tr>
<tr>
<td>Par semaine:</td>
<td></td>
</tr>
<tr>
<td>Cours</td>
<td>2</td>
</tr>
<tr>
<td>Exercices</td>
<td></td>
</tr>
<tr>
<td>Pratique</td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>GREM</td>
<td>5</td>
</tr>
<tr>
<td>Oblig.</td>
<td>☒</td>
</tr>
<tr>
<td>Facult.</td>
<td>☐</td>
</tr>
<tr>
<td>Option</td>
<td>☐</td>
</tr>
<tr>
<td>Branches</td>
<td></td>
</tr>
<tr>
<td>Théoriques</td>
<td>☒</td>
</tr>
<tr>
<td>Pratiques</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Rendre l'étudiant capable :
- d'identifier les composantes d'un Système d'information géographique (SIG) orienté vers les besoins de l'ingénieur,
- d'évaluer la problématique de chacune d'elles,
- de concevoir un SIG et d'évaluer les conditions de réalisation,
- d'exploiter des images satellite pour, notamment, la détermination de l'occupation du sol.

CONTENU

- Principe d'un SIG.
- Acquisition, validation, pré-traitement des données.
- Modèle numérique d'altitude.
- Exploitation des données du SIG (traitements des données, traitements d'image).
- Problèmes de couplages avec des modèles de simulation.

FORME DE L'ENSEIGNEMENT : Ex cathédra, discussion et démonstration.

DOCUMENTATION : Notes polycopiées.

LIAISON AVEC D'AUTRES COURS : SIT I, Infographie, Banque de données Hydrologie.
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie rural</td>
<td>5</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
- Connaissance des notions fondamentales en droit en général et en droit privé en particulier.
- Maîtrise de l'accès à la documentation essentielle.
- Approfondissement par des exercices pratiques.
- Sensibilisation à des problèmes concrets liés à l'exercice de la profession.

CONTENU

1. Introduction générale au droit

La notion de droit - les sources du droit.

2. Introduction au droit privé
 - Notions générales de droit privé.
 - Introduction aux droits réels.
 - Aperçu du droit de la famille, du mariage et des successions.
 - Introduction au droit des personnes morales, des sociétés et du consortium.
 - Introduction au droit des obligations et des contrats.
 - Le contrat d'entreprise et le contrat de mandat.
 - La responsabilité civile.
 - La propriété immatérielle.

FORME DE L'ENSEIGNEMENT : Ex cathedra, avec exercices pratiques et discussion.

DOCUMENTATION : Code civil et Code des obligations; normes SIA 102, 103, 118; support du cours.

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Préparation pour :
Titre : DROIT II

Enseignant : N. Michel, professeur invité

<table>
<thead>
<tr>
<th>Heures totales : 25</th>
<th>Par semaine :</th>
<th>Cours</th>
<th>2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie rural</td>
<td>5, 6</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

- Connaissance des notions fondamentales en droit public.
- Maîtrise de l'accès à la documentation essentielle.
- Approfondissement par des exercices pratiques.
- Sensibilisation à des problèmes concrets liés aux rapports avec les autorités de l'Etat.

CONTENU

- Introduction générale au droit public.
- Les principes de l'activité administrative.
- La notion de l'acte administratif.
- L'aménagement du territoire et la police des constructions.
- La protection de l'environnement.
- La police des constructions.
- L'expropriation.
- L'énergie et les voies de communication.
- La juridiction administrative.

FORME DE L'ENSEIGNEMENT : Ex cathedra, avec exemples pratiques et discussion.

DOCUMENTATION : Extraits du Recueil systématique du droit fédéral, support du cours.

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Préparation pour :
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>5</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaissance de l'agriculture suisse
Introduction à la gestion de l'exploitation agricole
Développement du monde rural
Compréhension du monde rural

CONTENU

- zones rurales de Suisse
- problèmes de l'agriculture suisse
- objectifs de l'exploitation agricole
- mécanismes de l'économie d'entreprise, leur adaptation aux besoins particuliers de l'exploitation agricole
- analyse de l'exploitation agricole
- perçu sur les diverses cultures et productions animales
- calcul budgétaire et élaboration d'un plan de financement
- expérience de développement régional en Suisse et dans le Tiers-Monde suivant le temps disponible et le désir des étudiants.
- sites d'exploitations agricoles de types divers, de la plaine à la montagne

ORME DE L'ENSEIGNEMENT: Ex cathédra, exercices.

DOCUMENTATION: quelques polycopiés

AISON AVEC D'AUTRES COURS: Economie rurale II
ECOLOGIE II

Enseignant: TARRADELLAS Joseph, professeur

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>5</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

À la fin du cours, les étudiants seront capables:
- de prévoir les formes d’aménagements des écosystèmes terrestres qui en préervent la richesse écologique

CONTENU

FORME DE L’ENSEIGNEMENT: Ex cathédra; exercices sur des études de cas

DOCUMENTATION: graphiques et tableaux polycopiés

LIAISON AVEC D’AUTRES COURS: -Biologie, -Milieu naturel I et II, -Ecologie I, -Gestion et conservation des sols, -Qualité des eaux et écotoxicologie I, II et III
Titre: ASSAINISSEMENT DES AGGLOMERATIONS II

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 45</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître et savoir appliquer les connaissances d'hydraulique, d'hydrologie et d'assainissement au calcul des collecteurs d'un réseau d’égouts

Connaître les principes du plan général d'évacuation des eaux.

CONTENU

Hydraulique urbaine
La formule rationnelle et ses applications
Autres formules d'hydrologie pour zones suburbaines
Rétentions à la source et maîtrise des coefficients de ruissellement.
Bilans polluants et analyse coût-avantage
Ouvrages spéciaux d'un réseau d'assainissement
Instruments de mesure et de prélèvements

FORME DE L'ENSEIGNEMENT: Cours illustré d'exercices faits en classe, projet, visites, travaux pratiques

DOCUMENTATION: fiches polycopiées, "Les réseaux d'assainissement", Bourrier TEC DOC

LIAISON AVEC D'AUTRES COURS: --

Préalable requis: -Hydraulique II (GR4), -Hydrologie I (GR3), -Assainissement des agglomérations I (GR4)

Préparation pour: -Génie sanitaire I (GR6), -Traitement des déchets I (GR6)
Titre: QUALITE DES EAUX ET ECOTOXICOLOGIE I (option environnement)

Enseignant: TARRADELLAS Joseph, professeur

<table>
<thead>
<tr>
<th>Heures total: 30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Branches</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables:
- de comprendre les bases de chimie et de bioécologie des eaux usées et naturelles

CONTENU

Critères de qualité chimique et bactériologique des eaux naturelles et de boisson. Normes de rejet d’eaux usées dans les eaux naturelles.

FORME DE L’ENSEIGNEMENT: Ex cathédra;

DOCUMENTATION: cours polycopiés

LIAISON AVEC D'AUTRES COURS: -Biologie, -Milieu naturel I et II, -Ecologie I et II, -Qualité des eaux et écotoxicologie II et III
OBJECTIFS
Savoir calculer un petit réseau de distribution d'eau potable (ramifié et maillé) et savoir esquisser un système complet d'alimentation en eau potable en milieu rural.

CONTENU
- Caractéristiques des eaux de consommation
- Captage des eaux destinées à la consommation et protection des ressources
- Types de traitement
- La filtration lente
- La filtration rapide
- Calcul d'une adduction et d'un réservoir principal
- Le réseau maillé
- Le réseau ramifié

FORME DE L'ENSEIGNEMENT: Cours et exercices en classe, séminaires, visites

DOCUMENTATION: Polycopié, normes techniques

LIAISON AVEC D'AUTRES COURS: --
Préalable requis: Assainissement des agglomérations I (GR4), Hydraulique II (GR4)
Préparation pour: Construction des ouvrages de génie sanitaire (GR8)
Titre: Génie microbiologique (option environnement)

Enseignant: PERINGER Paul, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 60</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>5</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

OBJECTIFS

Etre capable d'une approche quantitative des processus biologiques, comprendre le fonctionnement des bioréacteurs, savoir interpréter les cinétiques de transfert de masse et d'énergie de même que les cinétiques de croissance microbienne dans les biosystèmes.

CONTENU

Cours
- Approche quantitative des processus biologiques
- Bioréacteurs et techniques de culture microbienne
- Transfert de masse et d'énergie
- Cinétiques de croissance microbienne

TP
- Observation des microorganismes
- Analyse microbiologique des eaux
- Isolement et identification des coliformes
- Analyses enzymatiques rapides
- Evaluation des cinétiques microbiennes
- Essais de biodégradabilité
- Aération et transfert d'oxygène dans les biosystèmes
- Mesures et régulations sur les bioréacteurs

FORME DE L'ENSEIGNEMENT: Ex cathedra, Travaux pratiques

DOCUMENTATION : notes polycopiées

LIAISON AVEC D'AUTRES COURS : Biologie générale, Introduction à la biotechnologie, Valorisation et élimination biologique des déchets, Traitement des déchets
OBJECTIFS

Mécanismes de dégradation naturelle et/ou anthropique des couvertures pédologiques; prévention des risques; pronostic et méthodes thérapeutiques

CONTENU

L'érosion, la pollution par les métaux lourds, la latérisation, fertilisation azotée et pollution par le nitrate, fertilisation phosphatée et pollution par le phosphore, salinisation et alcalinisation, pollution atmosphérique et perte de vitalité de la forêt, polders et poldérisation, drainage et mise en valeur des histosols

FORME DE L'ENSEIGNEMENT: Cours ex cathédra, travaux de laboratoire, tournées de terrain, projets, conférenciers externes

DOCUMENTATION: cours polycopiés, documents annexes

LIAISON AVEC D'AUTRES COURS:
Préalable requis : géologie, chimie, pédologie I et II
Préparation pour : pédologie III, végétation I, diverses formations GR et GE
Titre: PHOTOGRAMMETRIE I (option mensuration)

Enseignant: KÖBL Otto, professeur EPFL

Heures total: 60 Par semaine: Cours 2 Exercices 2 Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>5</td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

OBJECTIFS

Présenter les principes pour restituer l'information métrique des prises de vues aériennes, ce qui permet aux étudiants d'étudier la base de la photogrammétrie, les méthodes de restitution et d'exercer la vision stéréoscopique. À la fin du cours, les étudiants seront capables d'effectuer des restitutions photogrammétriques sur stéréostructureurs.

CONTENU

Introduction générale, l'œil humain et la vision stéréoscopique.
Moyens simples pour la restitution de prises de vues.
Formules fondamentales de la photogrammétrie.
Orientation des photographies aériennes dans un stéréostructureur.
Appareils de restitution.
Orthoprojecteurs.

FORME DE L'ENSEIGNEMENT : Ex cathedra, exercices, travaux pratiques et colloques.

DOCUMENTATION : Cours polycopiés, programmes de calcul documentés (FORTRAN).

LIAISON AVEC D'AUTRES COURS :

Préalable requis : Géométrie descriptive, algèbre linéaire, statistique.
Préparation pour : Photogrammétrie II, mensuration.
Enseignant: Hubert DUPRAZ, chargé de cours

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>5</td>
<td>☒</td>
<td></td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

OBJECTIFS

Application concrète du calcul des probabilités et de la statistique aux problèmes spécifiques de la géodésie et de la mensuration.

CONTENU

Compléments de calcul matriciel.
La loi généralisée de propagation des erreurs moyennes.
Applications de la distribution de Gauss et des distributions dérivées.
Modèles pour la compensation par le principe des moindres carrés:
 compensation directe
 compensation d'observations médiates
 compensation d'observations conditionnelles
 compensation généralisée: modèle de Gauss-Helmert.
Le vecteur aléatoire à plusieurs dimensions.
L'ellipse et l'ellipsoïde de confiance.

RME DE L'ENSEIGNEMENT: ex cathedra, exercices et séminaires personnels.

DOCUMENTATION: manuel polycopié: "Théorie des erreurs II".
AISON AVEC D'AUTRES COURS:
 édable requis : théorie des erreurs I, statistique I, II et statistique appliquée.
 éparation pour :
OBJECTIFS
Apprendre à mettre en place et à utiliser une base de données pour la réalisation d'applications. Acquérir une connaissance suffisante des principes du fonctionnement interne des systèmes de gestion de bases de données (SGBD).

CONTENU

1. Généralités
 - Nature et objectifs de l'approche base de données;
 - Architecture d'un système de gestion de bases de données;
 - Cycle de vie d'une base de données.

2. Conception d'une base de données
 - Approche entité-association;
 - Règles de vérification et de validation.

3. Modèle et langages relationnels
 - Modèle et ses formes normales : méthode(s) de conception;
 - Bases théoriques : algèbre relationnelle;
 - Langages utilisateurs : SQL;
 - Passage de la conception (entité-association) à la mise en oeuvre relationnelle.

5. Principes de fonctionnement d'un SGBD
 - Les vues utilisateur;
 - Traitement de requête;
 - Concurrence, fiabilité, confidentialité;
 - Stockage des données.

6. Pratique d'un système relationnel
 - INGRES ou ORACLE.

FORME DE L'ENSEIGNEMENT: Ex cathedra; exercices en classe; travaux pratiques sur ordinateur.

DOCUMENTATION: Notes de cours et ouvrages en bibliothèque

LIAISON AVEC D'AUTRES COURS

Préalable requis:
Préparation pour:
OBJECTIFS

 comprendre les mécanismes d'un système d'information, en particulier dans le cas d'une application au territoire
 comprendre les contraintes techniques et organisationnelles pour la mise en place d'un SIT
 disposer des connaissances de base pour étudier les moyens techniques et informatiques à mettre en place
donner les bases pour suivre les évolutions conceptuelles et technologiques dans le domaine.

CONTENU

 étude de la systémique
 principes de base des systèmes d'information et des banques de données
 modèles de banques de données pour les SIT
 gestion, sécurité, intégrité des données; mise à jour
 mensuration officielle et SIT
 étude de cas

ORME DE L'ENSEIGNEMENT: Cours, discussions, démonstrations
DOCUMENTATION: notes de cours
liaison avec d'autres cours: SIG, Bases de données, Mensuration officielle
Titre: PEDOLOGIE III

Enseignant: J.C. VEDY, professeur EPFL

Heures total : 20 | Par semaine: Cours | Exercices | Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREM</td>
<td>6</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Techniques d’élaboration et modes d’interprétation des systèmes cartographiques pour les couverture pédologiques

CONTENU

Bases de la cartographie des sols, les différents types de cartes pédologiques, modes de représentation et utilisations pratiques
Projet de cartographie

FORME DE L’ENSEIGNEMENT: Cours ex cathédra, travaux de laboratoire, tournées de terrain

DOCUMENTATION: cours polycopiés, documents annexes, projets, conférenciers externes

LIAISON AVEC D'AUTRES COURS:
Préalable requis : géologie, chimie, pédologie I et II
Préparation pour : végétation I, diverses formations GR et GE
Titre: AGRONOMIE GENERALE II

Enseignant: CHARLES Jean-Paul, chargé de cours

Heures total : 20

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

OBJECTIFS

L’objectif est de compléter les connaissances de base sur la croissance des principaux végétaux cultivés et exploités, leurs besoins, les techniques et pratiques culturales, les principaux systèmes de production en agriculture.

CONTENU

Les principales cultures agricoles des zones tempérées : céréales, sarclées, fourragères, fruitières, maraîchères, viticulture.

Présentation générale de ces cultures et de leur insertion dans l'exploitation agricole.

ORME DE L’ENSEIGNEMENT: ex cathedra et visites sur le terrain

DOCUMENTATION: notes de cours, documents annexes, bibliographie

LAISON AVEC D’AUTRES COURS: Ecologie, Milieu naturel, Economie rurale, Sciences du sol, Aménagements
Titre: REMANIEMENT PARCELLEAIRE I

Enseignant: SCHNEIDER Jean-Robert, chargé de cours

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices - Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
</tr>
<tr>
<td>GREM</td>
<td>6</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIF

A la fin du cours les étudiants devraient être capables de comprendre le rôle et le déroulement d'un remaniement parcellaire agricole en tant qu'opération essentielle d'amélioration foncière.

CONTENU

- Le remaniement parcellaire dans le cadre des améliorations foncières
- L'organisation et le déroulement des syndicats d'améliorations foncières
- La procédure de consultation et de recours en matière d'améliorations foncières
- Les équipements collectifs et leur impact sur l'environnement

FORME DE L'ENSEIGNEMENT:

exposés illustrés, complétés par la présentation de documents et des discussions abordant des questions d'actualité.

DOCUMENTATION:

notes de cours polycopiées facilitant la compréhension des exposés

COURS PREALABLE REQUIS:

-

LIAISON AVEC D'AUTRES COURS:

sociologie rurale et milieu naturel, hydraulique agricole, routes et chemins, aménagement du territoire, droit foncier, mensuration cadastrale,
Titre: ROUTES ET CHEMINS I

Enseignant: R. CROTTAZ, Prof. DGC/EPFL

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREM</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

L'étudiant devra être en mesure d'établir de façon indépendante un projet de route ou de chemin de desserte rurale dans le cadre d'aménagements ruraux.

CONTENU

- Classification de la desserte rurale, constitution d'un réseau fonctionnel
- Caractéristiques géométriques et dynamiques des véhicules, paramètres déterminants du tracé
- Étude des éléments géométriques du tracé
- Principe généraux de l'élaboration des projets

FORME DE L'ENSEIGNEMENT: Ex cathedran avec exercices en salle

DOCUMENTATION: polycopié

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Mécanique générale I et II - Géotechnique et fondations I et II - Matériaux de construction

Préparation pour: Routes et chemins II, Equipements ruraux
OBJECTIFS

En fin de semestre, l’étudiant saura concevoir de manière globale un aménagement hydro-agricole spécifique (irrigation, drainage, ouvrage de rétention, lutte anti-érosive notamment) en vue de la mise en valeur des terres agricoles, de leur protection et de leur gestion.

CONTENU

- Notion de mise en valeur des terres, schémas directeurs, projets intégrés.
- Étude des besoins, évaluation des ressources, critères de décision et principes d’aménagement.
- Aménagements spécifiques :
 - drainage
 - irrigation
 - contrôle du ruissellement
 - ouvrages de défense contre l’érosion
 Aspects généraux, factibilité, présentation d’un projet, devis et principes de financement.
- Impacts de ce type d’aménagements sur le milieu (aspects socio-économiques et phyto-sanitaires).

FORME DE L’ENSEIGNEMENT : Ex cathédra et exercices.

DOCUMENTATION : Notes diverses. Plans types.

LIAISON AVEC D'AUTRES COURS : Hydrologie I et II, Aménagements ruraux, Physique du sol, Hydraulique générale et agricole, Pédologie I et II.
Titre : GEOTECHNIQUE ET FONDATIONS II

Enseignant : Edouard RECORDON, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine : cours - Exercices - Pratiques 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Destinataires et contrôle des études :</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sections (s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>GREM</td>
<td>6</td>
</tr>
<tr>
<td>..........................</td>
<td>..........................</td>
</tr>
<tr>
<td>..........................</td>
<td>..........................</td>
</tr>
</tbody>
</table>

OBJECTIFS

Appliquer à l'étude d'un cas concret les notions théoriques acquises au cours du 5e semestre, par un travail personnel, sur le terrain, au laboratoire et en classe.

Montrer par la critique de ce travail les limitations des méthodes de calcul, les incertitudes liées à la nature des sols et aux conditions d'hydraulique souterraine et d'hydrologie.

CONTENU

Technologie : Nature d'un sol - Les divers types de sols - L'eau dans le terrain - Compactage et force portante - Déformabilité - Résistance au cisaillement - Valeurs des paramètres géotechniques

Fondations : Travaux d'excavation et de remblayage - Fondations superficielles - Fondation des chemins A.F. - Ecrans de soutènement - Stabilité des pentes - Fouilles et canaux de drainage

FORME DE L'ENSEIGNEMENT : Travail par groupes se déroulant sur le terrain, en laboratoire ou en classe sous forme d'exercices ou de séminaires

DOCUMENTATION : Cours polycopiés de Technologie des sols (GC) et de Géotechnique et Fondations (GR)

LIAISON AVEC D'AUTRES COURS : Préalable requis : Géologie, Résistance des matériaux, Hydraulique

Préparation pour : Voies de circulation, Construction, Aménagements agricoles et des eaux et Génie rural
OBJECTIFS

Les bétons et mortiers sont des matériaux de construction composés, fabriqués et mis en place généralement sur le chantier où les moyens de contrôle sont souvent rudimentaires; or les caractéristiques de ces matériaux dépendent essentiellement de la composition et de la mise en place, qui doivent donc être parfaitement maîtrisées.

Le cours vise à mettre l'étudiant en position de maîtriser les procédés et moyens :
• de contrôler la qualité des composants;
• de composer des bétons et/ou mortiers pouvant répondre aux exigences des points de vue résistance, déformation et durabilité;
• de surveiller la fabrication et la mise en œuvre de manière à atteindre les caractéristiques exigées.

Ce cours prépare directement à l'activité professionnelle sur chantiers de construction.

CONTENU

• Introduction à la technologie des bétons et mortiers
• Structure des bétons et mortiers
• Résistances mécaniques
• Déformations
• Liants minéraux
• Granulats
• Autres constituants des bétons et mortiers : eau, air, adjuvants
• Composition des bétons et mortiers hydrauliques
• Bétons et mortiers spéciaux

FORME DE L'ENSEIGNEMENT : cours ex-cathedra

DOCUMENTATION : cours polycopié

LIAISON AVEC D'AUTRES COURS

Préalable requis : sciences de base
Préparation pour : Construction II et activité professionnelle
Titre : CONSTRUCTION II

Enseignant : Manfred MIEHLBRADT, chargé de cours

Heures totales : 30
Par semaine :

<table>
<thead>
<tr>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie Rural</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Théoriques Pratiques</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Theoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

OBJECTIFS

L'étudiant doit être capable de concevoir des structures simples et courantes, et de calculer et dessiner leurs éléments constitutifs.

CONTENU

Construction en bois
Charges sur un bâtiment rural
Systèmes porteurs (pannes - chevrons, cadres)
Détails de construction (assemblages)
Stabilité d'ensemble (contrevenements)
Passerelles

ORME DE L'ENSEIGNEMENT : Cours ex cathedra; exercices en salle.

OCUMENTATION : Polycopiés; documentation professionnelle.

AISON AVEC D'AUTRES COURS

Réalable requis : Mécanique de la construction I et II, Mécanique des sols I, Construction I
Réparation pour : Construction III
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie rural</td>
<td>5, 6</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

- Connaissance des notions fondamentales en droit public.
- Maîtrise de l'accès à la documentation essentielle.
- Approfondissement par des exercices pratiques.
- Sensibilisation à des problèmes concrets liés aux rapports avec les autorités de l'Etat.

CONTENU

- Introduction générale au droit public.
- Les principes de l'activité administrative.
- La notion de l'acte administratif.
- L'aménagement du territoire et la police des constructions.
- La protection de l'environnement.
- La police des constructions.
- L'expropriation.
- L'énergie et les voies de communication.
- La juridiction administrative.

FORME DE L'ENSEIGNEMENT : Ex cathedra, avec exemples pratiques et discussion.

DOCUMENTATION : Extraits du Recueil systématique du droit fédéral, support du cours.

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Préparation pour :
Titre: HTE/ECONOMIE RURALE II

Enseignant: VALLAT Jean, professeur EPFZ

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine: Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
</tr>
<tr>
<td>GR</td>
<td>6</td>
<td>☒</td>
<td>□</td>
</tr>
</tbody>
</table>

Objectifs

Connaissance de l'agriculture suisse
Introduction à la gestion de l'exploitation agricole
Développement du monde rural
Compréhension du monde rural

Contenu

Les zones rurales de Suisse
Les problèmes de l'agriculture suisse
Les objectifs de l'exploitation agricole
Les mécanismes de l'économie d'entreprise, leur adaptation aux besoins particuliers de l'exploitation agricole
Analyse de l'exploitation agricole
Aperçu sur les diverses cultures et productions animales
Calcul budgétaire et élaboration d'un plan de financement
Expérience de développement régional en Suisse et dans le Tiers-Monde
(Suivant le temps disponible et le désir des étudiants).
Visites d'exploitations agricoles de types divers, de la plaine à la montagne

Forme de l'enseignement: Ex cathédra, exercices.

Documentation: quelques polycopiés

Liaison avec d'autres cours: Economie rurale I
OBJECTIFS

Introduction à la technique de la photo-interprétation telle qu'elle s'applique pour les sciences de la terre (forêsterie, pédologie, agronomie, etc.). À la fin du cours, l'étudiant sera capable de recourir aux techniques de la photo-interprétation pour les divers travaux en génie rural et environnement.

CONTENU

Sources de rayonnement électromagnétique.
Propagation des rayonnements électromagnétiques dans l'espace.
Capteurs électromagnétiques.
Utilisation d'un spectrophotomètre.
Signature spectrale de la végétation.
Films photographiques.
Vision stéréoscopique.
Mesures et cartographie avec photographies aériennes.
Méthodes de photo-interprétation.
Elaboration d'une clef d'interprétation.
Prises de vues et avions photographes.

FORME DE L'ENSEIGNEMENT : Ex cathedra et exercices, avec élaboration d'une clef d'interprétation.

DOCUMENTATION : Cours polycopiés.

LIAISON AVEC D'AUTRES COURS :

Préalable requis : Physique.
Préparation pour : Aménagement du territoire, génie rural, génie de l'environnement.
Titre: QUALITÉ DES EAUX ET ECOTOXICOLOGIE II

Enseignant: TARRADELLAS Joseph, professeur

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
<td>Branches</td>
</tr>
<tr>
<td>GR</td>
<td>6</td>
<td>☒</td>
<td></td>
<td></td>
<td>Théoriques Pratiques</td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables:
- d'appliquer les principales méthodes d'analyse chimique et biologique applicables aux eaux usées et naturelles

CONTENU

Echantillonnage des eaux usées et naturelles. Méthodes de prélèvement des invertébrés benthiques.

Toutes ces méthodes seront appliquées à l'étude intégrée d'un secteur de cours d'eau et des rejets qu'il reçoit.

FORME DE L'ENSEIGNEMENT: Pratique du terrain, laboratoire

DOCUMENTATION: cours polycopié et fiches sur les méthodes analytiques.

LIAISON AVEC D'AUTRES COURS: -Biologie, -Milieu naturel I et II, -Qualité des eaux et écotoxicologie I et II
TRAITEMENT DES DECHETS I (Option environnement)

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaitre les processus de traitement des eaux usées et leur mise en oeuvre dans les différents ouvrages et appareils d'une station d'épuration des eaux usées.
Savoir dimensionner des ouvrages de traitement physique des eaux usées.

CONTENU

- Principes fondamentaux de la gestion des déchets
- Le système ouvert stationnaire
- Processus unitaires physiques (décantations, filtrations)
- Calcul de dimensionnement général d'une station d'épuration
- Stations d'épuration d'une capacité entre 20 et 20'000 habitants environ
- Aspects techniques et d'exploitation
- Visites de stations d'épuration des eaux usées

FORME DE L'ENSEIGNEMENT: Cours, exercices, visites techniques

DOCUMENTATION: fiches polycopiées, documents

LIAISON AVEC D'AUTRES COURS:
Préalable requis: - Assainissement des agglomérations I et II, Biotechnologie
Préparation pour: - Traitement des déchets II, Génie sanitaire II
Titre: GENIE SANITAIRE I (option environnement)

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Savoir aborder un choix d'emplacement d'un équipement ou d'un projet d'étude de faisabilité et d'impact en considérant un ou plusieurs objectifs, un ou plusieurs critères et un ou plusieurs décideurs.

CONTENU

- Le choix d'emplacement des équipements
- Le réseau et la centrale: la planification des systèmes de désapprovisionnement
- Optimisation monocritère
- Analyse coût/avantage
- Analyse à deux ou plusieurs critères de choix
- Méthodes de surclassement
- Electre II
- Famille cohérente de critères

FORME DE L'ENSEIGNEMENT: Cours et exercices

DOCUMENTATION: Notes polycopiées, ouvrages de référence, études de cas

LIAISON AVEC D'AUTRES COURS:
Préalable requis: - Formation professionnelle complémentaire I et II
Préparation pour: - Génie sanitaire II
Titre: VEGETATION I (option environnement)

Enseignant: J.C. VEDY, professeur EPFL et P. HAINARD, professeur UNIL

Heures total: 20 Par semaine: Cours 1 Exercices 1 Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREM</td>
<td>6</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>option</td>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>environnement</td>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaissance de la genèse et du fonctionnement des grandes formations sol-végétation naturelles

CONTENU

Formations naturelles et formations anthropisées, formations naturelles climatiques et formations naturelles stationnelles; les grands systèmes climatiques sol-végétation; les formations spécialisées; l'approche des équilibres sol-végétation au niveau stationnel

FORME DE L'ENSEIGNEMENT: Cours ex cathédra, travaux de laboratoire, tournées de terrain

DOCUMENTATION: cours polycopiés, documents annexes

LIAISON AVEC D'AUTRES COURS:

Préalable requis : géologie, chimie, pédologie I, II et III, gestion et conservation des sols

Préparation pour : végétation II (plan d'étude 90-91), diverses formations GR et GE
Titre: POLLUTION ATMOSPHÉRIQUE I (option environnement)

Enseignant: VAN DEN BERGH H., prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>2 Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>6</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branches</th>
<th>Théoriques</th>
<th>Prat.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Acquérir les bases nécessaires pour traiter les problèmes de pollution de l'air qui se posent à l'ingénieur.

CONTENU

1. Introduction : interaction dans la troposphère
2. Principes de photochimie et spectroscopie applicables à la chimie de la troposphère
3. Chimie dans la troposphère
4. Eléments de cinétique fondamentale appliquée aux rédactions de l'atmosphère
5. Techniques de mesure des polluants gazeux critiques et non-critiques
6. Enceintes d'environnement
7. Vitesse et mécanismes des réactions en phase gazeuse

FORME DE L'ENSEIGNEMENT: Ex cathédra

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS: Milieux naturels I et II, Ecologie I et II
Préparation pour : Pollution et déposition atmosphérique II, Végétation I et II, Gestion du milieu naturel
Titre: PHOTOGAMMETRIE II (option mensuration)

Enseignant: KÖBLER Otto, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 50</th>
<th>Par semaine: Cours 3 Exercices 2 Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s) Semestre</td>
<td>Oblig. Facult. Option</td>
</tr>
<tr>
<td>GR 6</td>
<td>□ □ □</td>
</tr>
</tbody>
</table>

OBJECTIFS

Introduction à l'application pratique de la photogrammétrie pour des leviers topographiques et pour la mensuration cadastrale, étude de la précision et du rendement de la photogrammétrie, ce qui permet aux étudiants de savoir utiliser les moyens de la photogrammétrie dans la pratique de la mensuration.

CONTENU

Photogrammétrie analytique.
Triangulation aérienne et compensation de bloc.
Chambres de prise de vues.
Analyse de la qualité des photographies aériennes.
Plan de vol.
Précision de la photogrammétrie aérienne.
Application et rendement de la photogrammétrie aérienne en mensuration cadastrale.

FORME DE L'ENSEIGNEMENT : Ex cathedra, exercices en restitution topographique et triangulation aérienne.

DOCUMENTATION : Cours polycopiés, programmes de calcul documentés (FORTRAN).

LIAISON AVEC D'AUTRES COURS :

Préalable requis : Géométrie descriptive, algèbre linéaire, statistique, photogrammétrie I.
Préparation pour : Génie rural, mensuration.
Titre: SYSTÈME D'INFORMATION DU TERRITOIRE II (option mensuration)

Enseignant: MISEREZ Jean-Paul, chargé de cours

<table>
<thead>
<tr>
<th>Heures total: 30</th>
<th>Par semaine: Cours 1</th>
<th>Exercices 2</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
</tr>
<tr>
<td>GR</td>
<td>6</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS
- comprendre les mécanismes d'un système d'information, en particulier dans le cas d'une application au territoire
- comprendre les contraintes techniques et organisationnelles pour la mise en place d'un SIT
- disposer des connaissances de base pour étudier les moyens techniques et informatiques à mettre en place
- donner les bases pour suivre les évolutions conceptuelles et technologiques dans le domaine.

CONTENU
- étude de la systémique
- principes de base des systèmes d'information et des banques de données
- modèles de banques de données pour les SIT
- gestion, sécurité, intégrité des données; mise à jour
- mensuration officielle et SIT
- étude de cas

FORME DE L'ENSEIGNEMENT: Cours, discussions, démonstrations
DOCUMENTATION: notes de cours
LIAISON AVEC D'AUTRES COURS: SIT I, SIG, Bases de données, Mensuration officielle
| Titre: MENSURATION CADAストRALE (option mensuration) |
|-----------------|------------------|-----------------|---------------------|
| Enseignant: | Alphonse MISEREZ, professeur EPFL |
| Heures total : | 30 |
| Par semaine: | Cours 3 Exercices Pratique |
| Section(s) | Semestre | Oblig. | Facult. | Option | Branches | Théoriques Pratiques |
| GR | 6 | x | | | | |

OBJECTIFS

Donner aux étudiants les connaissances essentielles sur la mensuration officielle ainsi que sur les bases légales, l'organisation actuelle et les développements futurs du cadastre en Suisse; préparer la campagne de mensuration.

CONTENU

Le cadastre suisse: historique, bases légales, organisation, prescriptions techniques, financement.
La triangulation de l'Ve ordre et sa conservation.
La mensuration parcellaire: acquisition, traitement et représentation des données.
Le plan d'ensemble.
La mise à jour et la rénovation du cadastre.
Le projet REMO (Réforme de la mensuration officielle.)

FORME DE L'ENSEIGNEMENT: ex cathédra; discussion et étude de cas.

DOCUMENTATION: notes polycopiées, prescriptions fédérales.

LIAISON AVEC D'AUTRES COURS:
Préalable requis: topographie, photogrammétrie, infographie et dessin technique, théorie des erreurs.
Préparation pour: campagne de mensuration.
Titre: REMANIEMENT PARCELLAIRE II
Enseignant: SCHNEIDER Jean-Robert, chargé de cours

<table>
<thead>
<tr>
<th>Heures total: 15</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices - Pratique -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
</tr>
<tr>
<td>GREM</td>
<td>7</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIF
A la fin du cours les étudiants devraient être capables de comprendre comment s'étudie et s'exécute un remaniement parcellaire agricole, afin d'appliquer les connaissances acquises dans le cadre du projet d'équipements ruraux.

CONTENU
Les opérations géométriques de l'ancien et du nouvel état parcellaire
La réalisation du projet et son financement

FORME DE L'ENSEIGNEMENT : exposés illustrés, complétés par la présentation de documents et des discussions abordant des questions d'actualité.

DOCUMENTATION : notes de cours polycopiées facilitant la compréhension des exposés

COURS PREALABLE REQUIS : remaniement parcellaire I

LIAISON AVEC D'AUTRES COURS : sociologie rurale et milieu naturel, hydraulique agricole, routes et chemins, aménagement du territoire, droit foncier, mensuration cadastrale,
Titre: AMENAGEMENT DU TERRITOIRE I

Enseignant: Claude WASSERFALLEN, prof. DA/EPFL et J.-D. URECH, chargé de cours

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREM</td>
<td>7</td>
<td>☑</td>
<td></td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

OBJECTIFS

- Introduction générale à l’aménagement local
- Prise de conscience des problèmes et de leur interdépendance
- Acquisition des moyens pour l’esquisse d’une solution concrète
- Etude des problèmes posés à l’autorité communale

CONTENU

Les plans communaux :
définitions - inventaires - concepts, principes et conception directrices - application à des cas typiques - le plan directeur communal - le plan d’affectation

les plans particuliers :
plans partiels d’affectation - plan de quartier - plans spéciaux

Les notions sont abordées en relation avec les études faites à l’échelon régional.

FORME DE L’ENSEIGNEMENT: Ex cathédra, présentation de cas concrets, esquisses permettant de justifier une proposition sectorielle d’aménagement.

DOCUMENTATION: Fiches polycopiées, aides-mémoire, documents officiels

LIAISON AVEC D’AUTRES COURS :
Préalable requis : Droit III et IV, Economie rurale
Préparation pour : Aménagement du territoire II, Transports
OBJECTIFS

L'étudiant devra être en mesure d'établir de façon indépendante un projet de route ou de chemin de desserte rurale dans le cadre d'aménagements ruraux.

CONTENU

- Travaux d'infrastructure, mouvements de terres
- Conception de la superstructure, dimensionnement
- Matériaux de construction et éléments constructifs

FORME DE L'ENSEIGNEMENT : Ex cathedran avec exercices en salle

DOCUMENTATION : polycopié

LIAISON AVEC D'AUTRES COURS :
Préalable requis : Mécanique générale I et II - Géotechnique et fondations I et II - Matériaux de construction - Rouées et chemins I

Préparation pour : Equipements ruraux
OBJECTIFS

Suite à ce cours, l'étudiant saura concevoir des ouvrages du Génie rural, tels des stations de pompage, des bassins de rétention, ..., dimensionner des ouvrages hydrauliques, d'aménagement pastoral et de petits cours d'eau, ainsi que des ouvrages de Génie civil adapté aux conditions agricoles. Les questions inhérentes aux routes et chemins ruraux ne sont pas traitées dans ce cours.

CONTENU

- Conception et dimensionnement de stations de pompage, appareillage électro-mécanique - fonctionnement.
- Ouvrages de soutènement et de Génie civil adaptés aux structures et conditions agricoles.
- Méthodes de stabilisation de glissements, de talus, de rives.
- Conception d'ouvrages hydrauliques, de bassins de rétention, leur intégration dans le paysage.
- Aménagements pastoraux - adduction d'eau, fosse à purin, parcs.
- Ouvrages divers.

FORME DE L'ENSEIGNEMENT : Ex cathédra, visite sur le terrain.

DOCUMENTATION : Notes diverses, plans types et schémas d'ouvrages.

LIAISON AVEC D'AUTRES COURS : Hydraulique générale et agricole, Aménagements hydro-agricoles, routes et chemins ruraux, Mécanique de construction et Construction I, II.

OBJECTIFS

Sensibiliser les étudiants à l'interdépendance des différentes catégories de travaux d'améliorations foncières : voirie rurale, équipements hydrauliques, aménagement sylo-pastoral, restructuration de la propriété foncière. Réaliser un projet combiné dans une région de Suisse.

CONTENU

- Projet d'étude intégrant comprenant :
 - remaniement parcellaire,
 - avant-projet de planification de routes et chemins,
 - avant-projet de construction de routes et chemins,
 - avant-projet de contrôle des eaux de ruissellement.
 - Rapport technique et note de calcul.

FORME DE L'ENSEIGNEMENT : Travail personnel encadré et visite de terrain.

DOCUMENTATION : Notes polycopiées des divers cours concernés par le projet.

OBJECTIFS

Suite à ce projet, l'étudiant saura concevoir et dimensionner pratiquement un réseau d'assainissement des sols, adapté aux conditions climatiques et agro-culturelles. Il saura également comment élaborer un dossier d'avant-projet, rédiger un rapport technique et calculer un devis estimatif.

CONTENU

- Analyse des pluies, de profils de sols, des méthodes culturales.
- Définition des conditions d'assainissement.
- Conception d'un réseau et analyse de variantes.
- Impact sur l'environnement, préservation des zones humides, protection des rives de cours d'eau.
- Dimensionnement, calculs hydrauliques.
- Elaboration technique de l'avant-projet.
- Présentation d'un dossier, rapport technique et devis estimatif.

FORME DE L'ENSEIGNEMENT : Visite sur le terrain, contacts avec des ingénieurs praticiens, des agriculteurs; conseil en salle pendant l'élaboration de l'avant-projet.

DOCUMENTATION : Notes diverses, plans et devis types, données de base.

LIAISON AVEC D'AUTRES COURS : Hydraulique générale et agricole, Pédologie, Aménagements hydro-agricoles, Equipements ruraux, Milieux naturels I et II.
<table>
<thead>
<tr>
<th>Titre:</th>
<th>IRRIGATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>MERMOUD André, chargé de cours</td>
</tr>
<tr>
<td>Heures total :</td>
<td>60</td>
</tr>
<tr>
<td>Par semaine:</td>
<td>Cours 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREM</td>
<td>7</td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Suite à ce cours, l’étudiant disposera des éléments nécessaires à la conception et au dimensionnement d’un réseau d’irrigation.

CONTENU

- Conditions hydriques de végétaux en zones climatiques sèches - étude des besoins en eau (rappel).
- Evaluation des ressources.
- Technologie des ouvrages :
 - irrigation par gravité,
 - irrigation par aspersion,
 - irrigation localisée.
- Conception du réseau d’aménée et de distribution de l’eau.
- Impact de ce type d’aménagement sur le milieu.
- Elaboration d’un avant-projet.

FORME DE L’ENSEIGNEMENT : Ex cathédra, exercices, projet.

DOCUMENTATION : Cours polycopié, plans types, notes diverses.

LIAISON AVEC D’AUTRES COURS : Hydraulique générale et agricole, Hydrologie générale, Pédologie, Aménagement des terres et des eaux, Protection de l’environnement.
Titre: TRAVAUX DE GÉNIE RURAL

Enseignant: MUSY André, professeur EPFL

Heures total : 30
Par semaine:
- Cours
- Exercices
- Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREM</td>
<td>7</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Analyse des résultats de la campagne de Génie rural en vue de l'établissement d'un rapport ad-hoc. Elaboration d'un dossier technique.

CONTENU

- Traitement manuel et/ou informatisé des données recueillies.
- Analyse d'échantillons en laboratoire.
- Évaluation et présentation des résultats obtenus.
- Discussion et conclusions.
- Rédaction et élaboration d'un dossier technique critique.

FORME DE L'ENSEIGNEMENT : Travaux de laboratoire et en salle.

DOCUMENTATION : Guide de laboratoire, plans modèles.

LIAISON AVEC D'AUTRES COURS : Aménagements hydro-agricoles, Aménagements et équipements ruraux, Pédologie, Hydrologie I, II.
Titre : MATERIAUX DE CONSTRUCTION II

Enseignant : F. ALOU, Chargé de cours

Heures totales : 30

Par semaine : Cours Exercices Pratique

Destinataires et contrôle des études :

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>7</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Donner à l’étudiant le contact direct et concret avec les matériaux les plus utilisés dans le bâtiment et les travaux publics. Lui permettre d’appréhender par lui-même, par des observations et des essais, leur constitution et les phénomènes qu’ils peuvent manifester. Lui donner l’occasion de mettre en œuvre les outils fournis dans le cours de Matériaux de Construction I en vue de les maîtriser et d’en tirer les informations nécessaires à la conception, au calcul, à la réalisation et au contrôle.

CONTENU

- Technologie du béton
- Essais mécaniques
- Déformations élastiques et différences des matériaux de construction
- Durabilité (carbonatation, gel,...)
- Rédaction d’un rapport relatif aux essais et mesures

FORME DE L’ENSEIGNEMENT : démonstrations et essais en laboratoire

DOCUMENTATION : documents descriptifs des essais

LIAISON AVEC D'AUTRES COURS

Préalable requis : Matériaux de Construction I
Préparation pour : Béton armé, construction, activité professionnelle
Titre: CONSTRUCTION III

Enseignant: Manfred MIEHLBRADT, chargé de cours

<table>
<thead>
<tr>
<th>Heures totales: 30</th>
<th>Par semaine: Cours 1</th>
<th>Exercices</th>
<th>Pratique 1</th>
</tr>
</thead>
</table>

Destinataires et contrôle des études:

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie Rural</td>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branches

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
</table>

OBJECTIFS

L’étudiant doit être capable de concevoir des structures simples et courantes, et de calculer et dessiner leurs éléments constitutifs.

CONTENU

Construction en béton armé
- éléments plans (dalles, parois, murs)
- fondations superficielles (semelles, radiers)
- ouvrages ruraux (penceaux, murs de soutènement, canaux, bassins, réservoirs, ouvrages enterrés)
- aspects particuliers (préfabrication, plasticité, précontrainte)

Construction en maçonnerie, terre armée, géotextiles, terre crue,...

FORME DE L’ENSEIGNEMENT: Cours ex cathedra; exercices en salle.

DOCUMENTATION: Polycopiés; documentation professionnelle.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Mécanique de la construction I et II, Mécanique des sols I et II, Construction I et II, Matériaux de construction

Préparation post:

Titre: SOCIOLOGIE RURALE ET SOCIOLOGIE DE L'ENVIRONNEMENT

Enseignant: François HAINARD, chargé de cours

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine: Cours 2</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
</tr>
<tr>
<td>GREM</td>
<td>7</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Initier à l'approche sociologique de l'espace rural et aux problèmes de l'environnement.

Souligner les enjeux de la prise en compte d'une interaction constante entre l'environnement, la technique, l'économique, le social et le culturel dans l'intervention de l'ingénieur.

Initier aux rudiments de l'investigation sociologique.

CONTENU

Quelques concepts sociologiques de base. Nouvelles problématiques liées à l'espace rural et à l'environnement.

- La diversification des risques
- La restructuration de la demande sociale
- Les enjeux de la modernisation
- Les éco-industries
- Techniques d'enquête et méthodes d'investigation sociologiques

FORME DE L'ENSEIGNEMENT: Ex cathédra et discussions

DOCUMENTATION: documents divers

LIAISON AVEC D'AUTRES COURS:
OBJECTIFS

À la fin du cours, les étudiants seront capables:
- de comprendre l'impact et les transformations des contaminant chimiques dans les écosystèmes

CONTENU

Les grandes familles de polluants chimiques. Concept de macro- et micro-polluants.
Sources principales de micro-polluants dans l'environnement.

Dégradabilités physiques, chimiques et biotiques des polluants dans l'environnement. Importance particulière de la métabolisation. Bioaccumulation des polluants rémanents dans les chaînes trophiques.

Les bioindicateurs. Les tests toxicologiques et écotoxicologiques appliqués à la prévoyance de l'impact sanitaire et environnemental des produits chimiques. Cas particulier des substances mutagènes et cancérogènes

Application et conséquences de l'Ordonnance fédérale suisse sur les substances dangereuses. Législation suisse et législation européenne dans le domaine des produits toxiques.

FORME DE L'ENSEIGNEMENT: Ex cathédra; discussion et étude de cas.

DOCUMENTATION: notes polycopiées

LIAISON AVEC D'AUTRES COURS: Biologie, Chimie, Gestion et conservation des sols, Milieu Naturel I et II, Qualité des eaux et écotoxicologie I et II
Titre: TRAITEMENT DES DECHETS II (Option environnement)

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

Heures total : 45 Par semaine:	Cours 2	Exercices 1	Pratique
Section(s) | Semestre | Oblig. | Facult. | Option | Branches | Théoriques | Pratiques |
GR | 7 | x | | | x | | |

OBJECTIFS
- Savoir faire un calcul de dimensionnement général d'une station d'épuration des eaux usées (d'une capacité correspondant à quelques bâtiments à une taille correspondant à une petite ville).
- Connaitre et savoir planifier un système de collecte, stockage, transport, traitement et mise en décharge des déchets solides.

CONTENU
- Dimensionnement d'une STEP
- Avant-projet et coût approximatif d'une STEP
- Caractéristiques des déchets solides
- Collecte, stockage et transport des déchets solides
- Traitements des déchets solides
- Décharges finales, réactives ou stabilisées
- Aspects techniques et d'exploitation
- Visites d'installations de gestion des déchets

FORME DE L'ENSEIGNEMENT: Cours, exercices, visites techniques

DOCUMENTATION: fiches polycopiées, documents

LIAISON AVEC D'AUTRES COURS: --
Préalable requis: - Traitement des déchets I
Préparation pour: - Génie sanitaire III, Valorisation des déchets II
Titre: GÉNIE SANITAIRE II (option environnement)

Enseignant: MAYSTRE Lucien Yves, prof. EPFL

Heures total : 30 Par semaine: Cours 1 Exercices 1 Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>7</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître quelques questions méthodologiques essentielles aux études de choix d’emplacement, de faisabilité et d’impact.

CONTENU

- agrégation et désagrégation de données
- nombre de classes (discrétisation)
- effet de bord
- indice de dissimilarité
- tests de concordance
- fonctions de perception
- influence des subventions sur les comparaisons
- règles de péréquation
- évaluation environnementale d’impacts
- la législation environnementale

FORME DE L’ENSEIGNEMENT: Cours, conférences, exercices.
Travail en équipe de 2 (études de cas) se poursuitant en Génie sanitaire III.

DOCUMENTATION: Notes de cours polycopiées, ouvrages de référence.

LIAISON AVEC D’AUTRES COURS:
Préalable requis: - Génie sanitaire I
Préparation pour: - Génie sanitaire III
TRAVAUX DE GÉNIE DE L'ENVIRONNEMENT

Titre: TRAVAUX DE GÉNIE DE L'ENVIRONNEMENT (option environnement)

Enseignant: MAYSTRE L.Y., prof. EPFL + autres professeurs de l'orientation environnement

Heures total : 15

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>7</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Par semaine:

<table>
<thead>
<tr>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Apprendre à travailler en équipe pour présenter un rapport cohérent et bien ordonné des travaux effectués durant la campagne de génie de l'environnement.

CONTENU

Travail de groupe

FORME DE L'ENSEIGNEMENT : Mise au net de la campagne de terrain en génie de l'environnement

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS:

Préalable requis:

Préparation pour:
OBJECTIFS

A la fin du cours les étudiants doivent avoir une compréhension claire des processus biologiques d’élimination et de valorisation des déchets organiques et d’être apte à mettre en œuvre les notions pratiques acquises sur les procédés étudiés.

CONTENU

Biosystèmes microbiens continus stationnaires
Boues activées
Dimensionnement des biosystèmes à boues activées
Filtres et disques biologiques
Applications des systèmes d’épuration à biomasse fixée
Lagunage, Étangs d’oxydation
Élimination des déchets organiques solides - Décharges contrôlées
Procédés de traitement et d’épuration biologiques en développement

FORME DE L’ENSEIGNEMENT: Ex cathedra, études de cas, exercices

DOCUMENTATION: notes polycopiées

LIAISON AVEC D’AUTRES COURS: Génie microbiologique, Traitement des déchets
Titre: POLLUTION ATMOSPHÉRIQUE II (option environnement)

Enseignant: VAN DEN BERGH H., prof. EPFL

<table>
<thead>
<tr>
<th>Heures total : 45</th>
<th>Par semaine: Cours 2 Exercices 1 Pratique</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches Théoriques Prat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Acquérir les bases nécessaires pour traiter les problèmes de pollution de l'air qui se posent à l'ingénieur.

CONTENU

1. Cinétique et mécanisme des réactions en phase gazeuse des constituants de la troposphère contenant de l'azote

2. Mécanismes des réactions générales pour la formation d'ozone et de ses polluants associés dans la troposphère simulée et réelle : modèles de cinétique chimique

3. Bases chimiques dans la stratégie du contrôle des oxydants photochimiques et des composés organiques volatiles et toxiques

4. Formation d'acide sulfurique et nitrique dans les pluies acides et les brouillards

5. Particules dans l'atmosphère : particules primaires et secondaires

6. Chimie et activité mutagénique des hydrocarbures polycycliques aromatiques (PAH) de l'atmosphère et ses dérivés

7. Sources, durées de vie atmosphérique et disparition des espèces chimiques dans la troposphère naturelle

8. Interactions entre la chimie troposphérique et stratosphérique

FORME DE L'ENSEIGNEMENT: Ex cathédra

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS: Milieux naturels I et II, Ecologie I et II
Préparation pour : Végétation I et II, Gestion du milieu naturel
OBJECTIFS

A la fin du cours, les étudiants:

- connaîtront les principales applications actuelles des SIT, ainsi que les fonctions nécessaires à la gestion du territoire et la planification des interventions;

- seront capables d’appliquer une méthodologie rigoureuse pour l’analyse et la conception des systèmes d’information sur le territoire;

- connaîtront les technologies utilisées aujourd’hui dans le domaine des SIT et auront une bonne vue d’ensemble des systèmes informatiques actuels.

CONTENU

Après les cours SIT I et II, dans lesquels les notions essentielles des systèmes d’information du territoire ont été présentées, le cours SIT III traite en profondeur les aspects technologiques de ces systèmes, et propose une approche méthodologique de leur analyse et de leur conception.

FORME DE L’ENSEIGNEMENT: ex cathédra, avec discussions et études de cas. Démonstrations et exercices pratiques. Projet.

DOCUMENTATION: copies des transparents présentés dans le cadre du cours. Eléments de cours polycopiés. Références bibliographiques choisies.

LIAISON AVEC D'AUTRES COURS:

Préparation pour: systèmes d’information du territoire IV.
Titre: CARTOGRAPHIE NUMÉRIQUE (option mensuration)

Enseignant: KÖLBL Otto, professeur EPFL

Heures total : 30 Par semaine: Cours 1 Exercices 1 Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>7</td>
<td>☒</td>
<td>❌</td>
<td>❌</td>
<td></td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☑</td>
<td>❌</td>
<td>❌</td>
<td></td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☑</td>
<td>❌</td>
<td>❌</td>
<td></td>
<td>❌</td>
<td>❌</td>
</tr>
</tbody>
</table>

OBJECTIFS

Introduction aux techniques d'élaboration des plans et cartes topographiques et thématiques avec les méthodes de la cartographie numérique, y compris les techniques de reproduction des plans et des cartes.

CONTENU

Sémiologie graphique.
Modèle numérique de terrain et technique d'interpolation.
Orthophoto numérique et modèle d'un paysage.
Problème de la généralisation.
Combinaison d'une carte de signatures avec une carte d'images.
Vues obliques synthétiques.
Câmera de reproduction.
Techniques de reproduction (offset, utilisation des trames).

FORME DE L'ENSEIGNEMENT : Ex cathedra et exercices.

DOCUMENTATION : Cours polycopiés

LIAISON AVEC D'AUTRES COURS :

Préalable requis : Systèmes d'information géographique.
Préparation pour : SIT IV et séminaires de mensuration.
Titre: GEODESIE I (option mensuration)

Enseignant: Alphonse MISEREZ, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Initier les étudiants à la résolution de quelques problèmes géométriques concernant la sphère ou l'ellipsoïde et leurs projections planes et plus particulièrement du système en vigueur en Suisse.

CONTENU

- Forme et dimensions de la Terre; le géoïde et les surfaces de référence.
- Sphère et ellipsoïde: la trigonométrie sphérique, les coordonnées géographiques, la première forme quadratique, la résolution des deux problèmes fondamentaux.
- Théorie générale des projections cartographiques: les déformations et le théorème de Tissot.
- Quelques projections de la sphère et de l'ellipsoïde et le système de projection adopté par la Suisse pour ses travaux géodésiques.

FORME DE L'ENSEIGNEMENT:

Ex cathédra.

DOCUMENTATION:

Cours polycopié.

LIAISON AVEC D'AUTRES COURS:

- **Préalable requis**: topographie I - IV, théorie des erreurs I et II, mensuration cadastrale.
- **Préparation pour**: géodésie II.
Titre: TOPOMETRIE APPLIQUEE I (option mensuration)

Enseignant: Alphonse MISEREZ, professeur EPFL; Hubert DUPRAZ, chargé de cours

<table>
<thead>
<tr>
<th>Heures total :</th>
<th>60</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices 0</th>
<th>Pratique 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>7</td>
<td>[X]</td>
<td>[]</td>
<td>[]</td>
<td>[X]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

OBJECTIFS
Donner aux étudiants un complément de formation concernant l'emploi de divers appareils de mesure, ainsi qu'une maîtrise théorique et pratique des principales techniques topométriques.

CONTENU
Mise en œuvre et contrôle d'équipements: théodolites, tachéomètres, niveaux, appareils pour la mesure précise de distances.

Choix des équipements; exécution et traitements des mesures.

Exécution pratique des calculs de compensation: préanalyse, détection d'erreurs, réseaux libres, analyse de déformations.

Utilisation de capteurs électroniques en topométrie: problématique, avantages et inconvénients.

Géodésie par satellites, principalement le "Global Positioning System".

Chapitres choisis sur:
- l'histoire de la géodésie
- la mesure des distances topographiques, etc.

FORME DE L'ENSEIGNEMENT: ex cathédra, travaux pratiques et études personnelles.

DOCUMENTATION: notes polycopiées, modes d'emploi, par ex.: LTOP, INELTOP, cours GPS.

LIAISON AVEC D'AUTRES COURS:
Préalable requis: topographie I - IV, théorie des erreurs I, II.
Titre: TRAVAUX DE MENSURATION (option mensuration)

Enseignant: Alphonse MISEREZ, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 15</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s). Semestre</td>
<td>Oblig. Facult. Option</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR 7</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

OBJECTIFS

Traitement, exploitation et rapport concernant les travaux effectués par les étudiants durant la campagne de mensuration.

CONTENU

En fonction du thème ou du problème traité au cours de la campagne de mensuration, ces travaux pourront être:

- compensation d’un réseau de points de base
- traitement semi-graphique ou numérique des levés avec divers logiciels
- confection de plans et calculs de surfaces
- introduction des résultats dans un système d’information à référence spatiale
- élaboration d’un modèle numérique du terrain
- établissement de divers documents et d’un rapport sur les travaux effectués.

FORME DE L’ENSEIGNEMENT: travaux pratiques.

DOCUMENTATION: modes d’emploi, plans modèles, prescriptions officielles.

LIAISON AVEC D’AUTRES COURS:

Préalable requis: topographie I - IV, théorie des erreurs I, II, mensuration cadastrale, systèmes d’information du territoire I, II, photogrammétrie I, II.

Préparation pour: systèmes d’information du territoire III, IV.
OBJECTIFS
Le cours a pour but de donner aux futurs géomètres et ingénieurs en génie rural les connaissances en droits réels dont ils auront besoin pour exercer leur profession. L'accent sera mis sur les règles régissant le registre foncier, la propriété foncière et les servitudes.

CONTENU
1. Généralités sur les droits réels.
2. Le registre foncier (Organisation - fonctionnement - les opérations au grand livre - effets - nouvelles mensurations, remaniements parcellaires et introduction du registre foncier).
3. La propriété :
 a) La propriété en général (notion - protection - étendue - copropriété - propriété par étages - propriété commune).
 b) La propriété foncière (les immeubles - division et réunion de biens-fonds - acquisitions - étendue - restrictions.)
4. Les droits réels limités :
 a) En général.
 b) Les servitudes (servitudes foncières - usufruit et droit d'habitation - droit de superficie - servitudes irrégulières).
 c) Charges foncières
 d) Droits de gage immobiliers (notion - espèces - constitution - effets)

FORME DE L'ENSEIGNEMENT : Cours et discussion de cas pratiques

liaison avec d'autres cours : Droit IV
Titre: **CAMPAGNE DE GÉNIE RURAL**

Enseignant: MUSY André, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 3 sem.</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique 40</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>7</td>
<td>☒</td>
<td></td>
<td></td>
<td>☒ ☐ ☐ ☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

OBJECTIFS

À la fin de la campagne, les étudiants sauront
- évaluer les différents facteurs (techniques et socio-économiques) inhérents à l’établissement d’un projet d’aménagement et d’équipement rural.
- apprécier et mesurer les paramètres descriptifs relatifs au sol et aux eaux naturelles.

CONTENU

Avant le 7e semestre, les étudiants répartis en groupes effectuent plusieurs travaux sur le terrain dans une région géographique réunissant tous les aspects concernant divers projets réels d’aménagements et d’équipement rural.
Ils effectuent en laboratoire quelques analyses des échantillons prélèvés sur le terrain.
Au cours du 7e semestre 15 heures seront réservées au traitement des données et à la préparation d’un dossier de campagne !

FORME DE L’ENSEIGNEMENT : Travaux pratiques sur le terrain.

DOCUMENTATION : Plans descriptifs, mode d’emploi, documentations techniques.

LIAISON AVEC D’AUTRES COURS :
Préalable requis : tous les cours et exercices en Génie rural.
Préparation pour : travaux de semestre, séminaires et travail de diplôme.
<table>
<thead>
<tr>
<th>Titre: CAMPAGNE DE MENSURATION (option mensuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: Alphonse MISEREZ, professeur EPFL</td>
</tr>
<tr>
<td>Heures total : 3 sem.</td>
</tr>
<tr>
<td>Section(s) Semestre</td>
</tr>
<tr>
<td>GR 7</td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin de la campagne, les étudiants seront capables:
- d'établir un programme de mesures pour résoudre un problème particulier.
- de choisir les méthodes et équipements adéquats.
- de présenter un dossier complet avec rapport.

CONTENU

Avant le 7e semestre, dans une région choisie de cas en cas, les étudiants, répartis en groupes, effectuent un travail complet de mensuration (reconnaissance, triangulation, mesures de longues distances, polygonation, nivellement, levés de détails et de profils), ainsi qu'un relevé pour l'établissement du plan cadastral.

Au cours du 7e semestre, quelques heures sont réservées au traitement des mesures et à la préparation du dossier.

FORME DE L'ENSEIGNEMENT: travaux pratiques sur le terrain.

DOCUMENTATION: modes d'emploi, documentation technique.

LIAISON AVEC D'AUTRES COURS:

Préalable requis: tous les cours et exercices obligatoires de mensuration.

Préparation pour: travail de diplôme.
Titre: CAMPAGNE DE GENIE DE L'ENVIRONNEMENT (option environnement)

Enseignant: Lucien Yves MAYSTRE, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 3 sem</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique 40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>7</td>
<td>☒</td>
<td></td>
<td></td>
<td>☒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☒</td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin de la campagne, les étudiants sauront
- aborder sur le terrain les divers problèmes d'impact sur l'environnement (atmosphère, eau, sol, végétation)
- présenter un dossier complet avec rapport.

CONTENU

Entre le 6e et le 7e semestre, les étudiants répartis en groupes effectuent divers travaux sur le terrain dans une région géographique réunissant tous les aspects concernant la protection de l'environnement. Ils effectuent en laboratoire quelques analyses des échantillons prélevés sur le terrain. 15 heures seront réservées au traitement des données et à la préparation d'un dossier au cours du 7e semestre.

FORME DE L'ENSEIGNEMENT: travaux pratiques sur le terrain, dans le domaine de l'environnement

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS:

Préalable requis: tous les cours et exercices obligatoires en environnement

Préparation pour: travail de diplôme
<table>
<thead>
<tr>
<th>Titre:</th>
<th>HYDROLOGIE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>MUSY André, professeur EPFL, + NN</td>
</tr>
<tr>
<td>Heures total:</td>
<td>40</td>
</tr>
<tr>
<td>Par semaine:</td>
<td></td>
</tr>
<tr>
<td>Cours</td>
<td>Exercices</td>
</tr>
<tr>
<td>Pratique</td>
<td>Branches</td>
</tr>
<tr>
<td>Section(s) Semestre</td>
<td>Oblig.</td>
</tr>
<tr>
<td></td>
<td>Facult.</td>
</tr>
<tr>
<td></td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Théoriques</td>
</tr>
<tr>
<td></td>
<td>Pratiques</td>
</tr>
<tr>
<td>GREM 8</td>
<td>X</td>
</tr>
</tbody>
</table>

OBJECTIFS
Approfondir certaines connaissances en hydrologie urbaine et en hydrogéologie. Savoir évaluer les ressources en eau d’une région et ses potentialités hydrauliques.

CONTENU
- Hydrologie urbaine - définition, principe et méthodes de dimensionnement.
- Hydrogéologie - définition, méthodes et techniques d'évaluation des eaux souterraines.
- Les ressources en eau et leur évaluation.

FORME DE L'ENSEIGNEMENT : Ex cathédra, exercice en salle, visite de terrain.

DOCUMENTATION : Notes de cours diverses.

LIAISON AVEC D'AUTRES COURS : Hydrologie I, II, Aménagements et équipements ruraux, Assainissement des agglomérations.
OBJECTIF

A la fin du cours les étudiants devraient être capables de comprendre pourquoi et comment le remaniement parcellaire est une mesure particulièrement efficace d’aménagement du territoire et d’appliquer les connaissances acquises dans le cadre du projet d’aménagement du territoire III.

CONTENU

Le remaniement parcellaire de terrains à bâtir
Le remaniement parcellaire avec péréquation réelle

FORME DE L’ENSEIGNEMENT :
exposés illustrés, complétés par la présentation de documents et des discussions abordant des questions d’actualité.

DOCUMENTATION :
notes de cours polycopiées facilitant la compréhension des exposés

COURS PREALABLE REQUIS :
remaniement parcellaire I et II

LIAISON AVEC D’AUTRES COURS :
sociologie rurale et milieu naturel, hydraulique agricole, routes et chemins, aménagement du territoire, droit foncier, mensuration cadastrale,
Titre: AMENAGEMENT DU TERRITOIRE II

Enseignant: Claude WASSERFALLEN, prof. DA/EPFL et J.-D. URECH, chargé de cours

Heures total : 10 Par semaine: Cours / Exercices Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREM</td>
<td>8</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

OBJECTIFS
- Introduction générale à l'aménagement local
- Prise de conscience des problèmes et de leur interdépendance
- Acquisition des moyens pour l'esquisse d'une solution concrète
- Etude des problèmes posés à l'autorité communale

CONTENU
Les plans communaux :
definitions - inventaires - concepts, principes et conception directrices - application à des cas typiques - le plan directeur communal - le plan d'affectation

les plans particuliers :
plans partiels d'affectation - plan de quartier - plans spéciaux

Les notions sont abordées en relation avec les études faites à l'échelon régional.

FORME DE L'ENSEIGNEMENT: Ex cathédra, présentation de cas concrets, esquisses permettant de justifier une proposition sectorielle d'aménagement.

DOCUMENTATION: Fiches polycopiées, aides-mémoire, documents officiels

LIAISON AVEC D'AUTRES COURS:
Préalable requis : Droit III et IV, Économie rurale
Titre: AMENAGEMENT DU TERRITOIRE III

Enseignant: URECH Jean-Daniel et SCHNEIDER Jean-Robert, chargés de cours

<table>
<thead>
<tr>
<th>Heures total : 30</th>
<th>Par semaine: Cours - Exercices - Pratique 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>GREM</td>
<td>8</td>
</tr>
</tbody>
</table>

OBJECTIF

A l'aide d'une application concrète, les étudiants devraient être capables de comprendre que le remaniement parcellaire est une mesure particulièrement efficace d'aménagement du territoire.

CONTENU

Projet combiné de remaniement parcellaire et d'aménagement du territoire en zone à bâtir : règlement des constructions, étude du lotissement et répartition parcellaire du nouvel état foncier.

FORME DE L'ENSEIGNEMENT: projet de semestre réalisé par groupe d'étudiants

DOCUMENTATION: données du projet complétées par une visite sur le terrain

COURS PREALABLE REQUIS: aménagement du territoire I et II, remaniement parcellaire I et II

LIAISON AVEC D'AUTRES COURS: sociologie rurale et milieu naturel, hydraulique agricole, routes et chemins, aménagement du territoire, droit foncier, mensuration cadastrale
<table>
<thead>
<tr>
<th>Titre:</th>
<th>AMÉNAGEMENTS RURAUX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>MUSY André, professeur EPFL, + NN</td>
</tr>
<tr>
<td>Heures total :</td>
<td>60</td>
</tr>
<tr>
<td>Par semaine:</td>
<td>Cours 2 Exercices Pratique 4</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>GREM</td>
<td>8</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître et/ou approfondir certains types d'aménagements et certains concepts liés à la planification des ouvrages du Génie rural.

CONTENU

- Aménagements de cours d'eau.
- Aménagements sylvo-pastoraux.
- Aménagements en zone forestière et de montagne.
- Aménagements anti-érosifs.
- Planification des transports, modération du trafic.

FORME DE L'ENSEIGNEMENT : Présentation de cas spécifiques, visite sur le terrain.

DOCUMENTATION : Notes diverses, plans-types.

LIAISON AVEC D'AUTRES COURS : Aménagements et équipements ruraux, Aménagement du territoire et emaniement parcellaire, routes et domaines ruraux.
SEMINAIRES DE GENIE RURAL

Enseignant: MUSY André, professeur EPFL

Heures total : 40 Par semaine: Cours Exercices Pratique

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Facult.</th>
<th>Option</th>
<th>Branches</th>
<th>Théoriques</th>
<th>Pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREM</td>
<td>8</td>
<td>☒</td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Approfondir certaines connaissances dans le domaine du Génie rural en général et plus spécialement en ce qui concerne l’aménagement agricole des terres et des eaux. Recherche personnelle sur un thème précis en vue d’une application spécifique et pouvant être retenue comme sujet d’étude pour le diplôme pratique.

CONTENU

- Réflexion sur des sujets variés, par exemple :
 - production et utilisation du bio-gaz pour le pompage des eaux d’irrigation,
 - énergies renouvelables (solaire et éolienne) combinées avec des aménagements spécifiques,
 - hydraulique villageoise et mise en valeur de petits périmètres agricoles,
 - aménagements de zones agro-pastorales,
 - évaluation des ressources en eau souterraines pour les besoins d’irrigation,
 - aménagements de cours d’eau en zone rurale et alpine, aménagement de bassins versants - lutte anti-érosive,
 - amélioration et conservation des sols cultivés,
 - bassin de rétention,
 - aménagements sylvico-pastoral,
 - etc.
- Recherche personnelle sur un thème précis.
- Visites techniques, étude de cas.

FORME DE L’ENSEIGNEMENT : Séminaires, exercices pratiques et travail personnel.

DOCUMENTATION : Notes diverses.

LIAISON AVEC D’AUTRES COURS : Multiple.
OBJECTIFS

A la fin du cours, les étudiants seront capables:
- de préparer et d'exécuter les travaux de terrain d'une mensuration officielle

CONTENU

Principe des systèmes cadastraux et des systèmes d'information à référence spatiale
Genres de systèmes cadastraux
 Techniques d'acquisition et de gestion de données de mensuration
Le cadastre suisse: historique, état actuel, méthodes et prescriptions techniques, organisation

FORME DE L'ENSEIGNEMENT: Ex cathédra; discussion et étude de cas.

DOCUMENTATION: notes polycopiées

LIAISON AVEC D'AUTRES COURS: Géodésie, Topographie, Photogrammétrie.
Dessin de plans et cartes.
OBJECTIFS
- Initier les étudiants aux problèmes pratiques de construction (chantiers, matériaux, entreprises)
- Planification de réalisation
- Calculs
- Coût et intégration des exigences d'exploitation dans la conception

CONTENU
- Construction de collecteurs et de conduites d'approvisionnement en eau
- Pousse-tubes
- Construction de bassins de rétention
- Rappel des calculs statiques d'ouvrages enterrés
- Stations de pompage et de relevage
- Matériaux et problèmes d'exploitation
- Ouvrages de déversements dans un cours d'eau
- Visites ciblées de chantiers correspondant à des ouvrages ou parties d'ouvrages examinées ou étudiées sur place.

FORME DE L'ENSEIGNEMENT: Cours et visites de chantiers

DOCUMENTATION: Fiches techniques
LIAISON AVEC D'AUTRES COURS: --
Préalable requis: Traitement des déchets II, Construction I, II et III, Mécanique des sols, Matériaux de construction I et II.
Préparation pour: -
OBJECTIFS

A la fin du cours les étudiants doivent avoir une compréhension claire des processus biologiques d'élimination et de valorisation des déchets organiques et d'être apte à mettre en oeuvre les notions pratiques acquises sur les procédés étudiés.

CONTENU

Valorisation agricoles et alimentaires
- Compostage - Fermentation aérobie thermophile
- Aliments de bétail - Protéines d'organismes unicellulaires
- Culture de champignons et de leur mycélium.

Valorisations énergétiques
- Production de méthane - Aspects biochimiques et microbiologiques
- Production de méthane - Aspects technologiques - Procédés
- Dimensionnement des biométhaniseurs
- Production de carburants - Ethanol - Acétone/Butanol.

FORME DE L'ENSEIGNEMENT: Ex cathedra, visites techniques d'installations

DOCUMENTATION: notes polycopiées

LIAISON AVEC D'AUTRES COURS: Génie microbiologique, Traitement des déchets
Titre: VEGETATION II (option environnement)

Enseignant: J.C. VEDY, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total :</th>
<th>20</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices 1</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td></td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GREM</td>
<td></td>
<td>8</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaissances des propriétés fonctionnelles des grandes formations agricoles et des problèmes relatifs à leur mise en valeur et au maintien de leur fertilité

CONTENU

Fertilité et systèmes de production; analyse et diagnostic de la fertilité; évolution de certaines composantes de la fertilité sous l'influence des systèmes de culture; prise en compte de la fertilité dans les décisions techniques

FORME DE L'ENSEIGNEMENT: Cours ex cathédra, exercices
DOCUMENTATION: cours polycopiés, documents annexes
LIAISON AVEC D'AUTRES COURS: Préalable requis : géologie, chimie, pédologie I, II et III, gestion et conservation des sols, végétation I
Titre: GESTION DU MILIEU NATUREL (option environnement)

Enseignant: Pierre HUNKELER, chargé de cours

<table>
<thead>
<tr>
<th>Heures total : 50</th>
<th>Par semaine:</th>
<th>Cours 2</th>
<th>Exercices</th>
<th>Pratique 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GREM</td>
<td>8</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

On connaître les caractéristiques et la valeur du milieu naturel, les interactions entre l'homme et la nature, les principes de prise en compte et de gestion de l'environnement naturel.

ONTENU

- rappel de la diversité et de la valeur du milieu naturel
- ressources naturelles en général, situation et évolution
- méthodes de relevés, d'inventaire, d'évaluation
- sources de données
- bases légales et réglementaires
- intégration des aspects milieux naturels dans la planification
- mesures de protection, de compensation et de remplacement
- gestion du milieu naturel (buts, démarches, partenaires)

ORME DE L'ENSEIGNEMENT : Ex cathédra, travaux pratiques en salle et sur le terrain, éminaires.

DOCUMENTATION : Notes de cours, documents divers
OBJECTIFS
Savoir étudier le choix d'emplacement d'un équipement ou un projet de faisabilité et savoir le présenter devant un auditoire.

CONTENU
Génie sanitaire I et II, soit
- Le choix d'emplacement des équipements - Le réseau et la centrale: la planification des systèmes de désapprovisionnement - Optimisation monocrître - Analyse coût/avantage - Analyse à deux ou plusieurs critères de choix - Méthodes de surclassement - Electre II - Famille cohérente de critères
- Agrégation et désagrégation de données - Nombre de classes (discrétisation) - Effet de bord - Indice de dissimilarité - Tests de concordance - Fonctions de perception - Influence des subventions sur les comparaisons - Règles de péréquation - Evaluation environnementale d'impacts - Législation environnementale

FORME DE L'ENSEIGNEMENT: Conférence et projection de films - travail en équipe de deux (suite de Génie sanitaire II, étude de cas) - séminaires de présentation

DOCUMENTATION: Articles, références bibliographiques

LIAISON AVEC D'AUTRES COURS: --
Préalable requis: Génie sanitaire I et II
Préparation pour: --
Titre: SYSTÈMES D'INFORMATION DU TERRITOIRE IV (option mensuration)

<table>
<thead>
<tr>
<th>Enseignant:</th>
<th>Otto KOELBL, professeur EPFL; François GOLAY, chargé de cours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heures total:</td>
<td>50</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>GR</td>
<td>8</td>
</tr>
</tbody>
</table>

CONTEXTE
La conception et la mise en oeuvre des systèmes d’information du territoire fait appel à des connaissances dispensées dans plusieurs cours suivis durant les semestres précédents. Afin d’appliquer et d’approfondir ces connaissances, un projet de semestre intégrant la mise en oeuvre d’un système d’information et un atelier de génie logiciel est proposé aux étudiants.

OBJECTIFS
Ce projet doit permettre aux étudiants:

- d’identifier les difficultés propres à la conception et à la mise en oeuvre d’un système d’information à référence spatiale complexe à l’aide d’un système infographique;

- d’identifier et d’estimer les plus-values que l’utilisateur peut apporter à de tels systèmes par le développement d’applications spécialisées;

- d’acquérir une connaissance de la conduite de projets en génie logiciel leur facilitant le dialogue avec des informaticiens.

CONTENU
Ce projet se divise en deux volets complémentaires:

- analyse, conception et prototypage d’un système d’information à référence spatiale sur un système infographique du marché;

- développement d’une composante logicielle d’un SIT, dans le cadre d’un atelier de génie logiciel impliquant un travail coordonné de tous les étudiants.

Quelques cours et séminaires permettront de compléter les connaissances des étudiants en cours de semestre.

DOCUMENTATION: références bibliographiques et documentation du fabricant du système informatique utilisé.

JAISSON AVEC D'AUTRES COURS: systèmes d’information géogr. I et II, systèmes l’information du territoire I, II et III, bases de données, cartographie numérique, programmation I et I, infographie, topométrie, photogrammétrie I et II, mensuration cadastrale.
OBJECTIFS

Exposer la problématique de l'astronomie de position et montrer aux étudiants la complémentarité des travaux astronomiques et géodésiques.

CONTENU

Astronomie de position
La sphère céleste, le mouvement diurne, les systèmes de coordonnées et le triangle de position.

Les différentes définitions du temps, le problème de sa diffusion et de sa mesure.

Quelques méthodes pour déterminer la latitude et/ou la longitude d'un lieu et l'azimut d'une direction: observations du soleil, observations méridiennes, méthode des droites de hauteur.

Importance et précision des observations astronomiques.

Géodésie et astronomie
Etablissement d'un réseau géodésique.
Le nivellement fondamental.
La déviation de la verticale.

FORME DE L'ENSEIGNEMENT: ex cathedra - exercices et travaux de séminaires.

DOCUMENTATION: textes et fiches polycopiés.

LIAISON AVEC D'AUTRES COURS:
Préalable requis: topographie I - IV, théorie des erreurs I, II, géodésie I.
Titre: **TOPOMETRIE APPLIQUEE II** (option mensuration)

Enseignant: Alphonse MISEREZ, professeur EPFL

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours 1</th>
<th>Exercices 0</th>
<th>Pratique 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s). Semestre</td>
<td>Oblig. Facult. Option</td>
<td>Branches Théoriques Pratiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR 8</td>
<td>X</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Donner aux étudiants un complément de formation concernant l'emploi de divers appareils de mesure, ainsi qu'une maîtrise théorique et pratique des principales techniques topométriques.

CONTENU

Inventaire et analyse des bases topographiques pour les grands travaux: cartes, plans, repères, profils en long et en travers, relevés spéciaux.

Réseaux de référence pour l'implantation, le contrôle et les mesures de déformation des ouvrages d'art.

Principe et emploi du gyroscope, des lunettes zénithales et nadirales, de l'autocollimation.

Discussion d'exemples: tunnels, ponts, barrages, terrains instables.

FORME DE L'ENSEIGNEMENT: ex cathédra.

DOCUMENTATION: cours polycopié.

LIAISON AVEC D'AUTRES COURS:

Préalable requis: topographie I - IV, théorie des erreurs I, II, topométrie appliquée I.
Titre: SEMINAIRES DE MENSURATION (option mensuration)

Enseignant: Otto Kölbl, Alphonse MISEREZ, professeurs EPFL

<table>
<thead>
<tr>
<th>Heures total : 20</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Facult.</td>
<td>Option</td>
</tr>
<tr>
<td>GR</td>
<td>8</td>
<td>☒</td>
<td></td>
<td>☐</td>
</tr>
</tbody>
</table>

OBJECTIFS

Permettre aux étudiants d'entreprendre une étude personnelle liée aux aspects techniques, économiques et juridiques de divers travaux de mensuration.

CONTENU

Recherche bibliographique, acquisition de la documentation.

Travaux personnels sur un thème.

Rédaction d'un rapport et présentation orale des résultats.

Visites techniques, enquêtes, études de cas.

FORME DE L'ENSEIGNEMENT: séminaires, travaux personnels guidés.

DOCUMENTATION: modes d'emploi, rapports, expertises, documentation professionnelle.

LIAISON AVEC D'AUTRES COURS:

Préalable requis: topographie I - IV, théorie des erreurs I, II, mensuration cadastrale, systèmes d'information du territoire I, II, photogrammétrie I, II.
OBJECTIFS

Le cours a pour but de donner aux futurs géomètres et ingénieurs en génie rural les connaissances en droits réels dont ils auront besoin pour exercer leur profession. L'accent sera mis sur les règles régissant le registre foncier, la propriété foncière et les servitudes.

CONTENU

- Généralités sur les droits réels.
- Le registre foncier (Organisation - fonctionnement - les opérations au grand livre - effets - nouvelles mensurations, remaniements parcellaires et introduction du registre foncier).

La propriété :

- La propriété en général (notion - protection - étendue - copropriété - propriété par étages - propriété commune).
- La propriété foncière (les immeubles - division et réunion de biens-fonds - acquisitions - étendue - restrictions).

Les droits réels limités :

- En général.
- Les servitudes (servitudes foncières - usufruit et droit d'habitation - droit de superficie - servitudes régulières).
- Charges foncières
- Droits de gage immobiliers (notion - espèces - constitution - effets)

ORME DE L'ENSEIGNEMENT : Cours et discussion de cas pratiques

liaison avec d'autres cours:
<table>
<thead>
<tr>
<th>Titre : MATHEMATIQUES (REPETITIONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant : O. BACHMANN, chargé de cours EPFL/DMA</td>
</tr>
<tr>
<td>Heures totales : 30</td>
</tr>
<tr>
<td>Par semaine: Cours 2 Exercices</td>
</tr>
<tr>
<td>Pratique</td>
</tr>
<tr>
<td>Destinataires et contrôle des études</td>
</tr>
<tr>
<td>Section(s)</td>
</tr>
<tr>
<td>Toutes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>OBJECTIFS</td>
</tr>
</tbody>
</table>
L'étudiant insuffisamment préparé, en particulier le porteur d'une maturité de type A, B, D ou E, raffermira ou acquerra les connaissances mathématiques élémentaires nécessaires.

CONTENU
Eléments du calcul différentiel et intégral des fonctions d'une variable; éléments de géométrie analytique; algèbre des nombres complexes; calcul vectoriel et matriciel.

FORME DE L'ENSEIGNEMENT: Ex cathedra

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis: Cours de base en mathématiques et physique

Préparation pour: