CONTENU

Informations générales de 1 à 25

INFORMATIONS GENERALES
GENERAL INFORMATIONS
CALENDRIER ACADEMIQUE
ORDONNANCE SUR LE CONTROLE DES ETUDES

Partie spécifique à la section Sciences et Ingénierie de l'Environnement

PLAN D'ETUDES ET COURS DE LA SECTION
SCIENCES ET INGENIERIE DE L'ENVIRONNEMENT de 27 à 207

Pour tous renseignements :

Section Sciences et ingénierie de l'environnement (SSIE)
EPFL - Bât.GR -Ecublens
CH - 1015 LAUSANNE
Tél. +41 021 693 2771 /8043 - Fax +41 021 693 5730 - myriam.charlet@epfl.ch

Secrétariat : Bureau GR A2 365 - bâtiment GR, 2e étage

Directeur de Section : Prof. J. TARRADELLAS
ISTE/CECOTOX, Bât. GR, CH - 1015 LAUSANNE
Tél. +41 021 693 2712 ; joseph.tarradellas@epfl.ch
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informations générales</td>
<td>1</td>
</tr>
<tr>
<td>General informations</td>
<td>6</td>
</tr>
<tr>
<td>Calendrier académique</td>
<td>11</td>
</tr>
<tr>
<td>Ordonnance sur la formation menant au bachelor et au master</td>
<td>13</td>
</tr>
<tr>
<td>Ordonnance sur le contrôle des études menant au bachelor et au master</td>
<td>17</td>
</tr>
<tr>
<td>Début des sections</td>
<td>25</td>
</tr>
</tbody>
</table>
INFORMATIONS GENERALES

Organisation des études

Dès l’automne 2003, la formation à l’EPFL introduit progressivement le processus issu de la déclaration de Bologne, visant à coordonner et accréditer les titres et formations en Europe.

Les formations d’ingénieurs, d’architectes et de scientifiques à l’EPFL comporteront ainsi deux étapes d’études conduisant à deux titres :

- La formation de bachelor, d’une durée normale de 3 ans, correspondant à 180 crédits ECTS, qui est un titre académique permettant de poursuivre ses études par un master, à l’EPFL ou dans une autre institution universitaire analogue en Europe ;
- La formation de master, d’une durée normale de 1 an et demi à 2 ans, selon la spécialité, qui conduit à un titre professionnel de Master EPFL. Elle comprend donc de 90 à 120 crédits selon les domaines, en incluant un travail pratique de 30 crédits.

Ce système de crédits est en parfait accord avec le cadre général proposé par les instances européennes, à savoir le système ECTS (European Credit Transfer System). Un crédit correspond approximativement à 25-30 heures de travail de la part de l’étudiant.

Chaque année de formation à l’EPFL est divisée en deux semestres de 14 semaines, les examens ayant lieu en dehors de ces périodes.

Les treize voies de formation de bachelor débutent par une année propédeutique, dont l’essentiel consiste en un approfondissement en sciences de base (mathématiques, physique, chimie, sciences du vivant), complété par une initiation au domaine de spécialité. Une proportion de 10 % de sciences humaines fait également partie du cursus.

L’accès à la deuxième année de bachelor implique la réussite du contrôle de l’année propédeutique, basée sur le principe des moyennes et conduisant à l’acquisition de 60 crédits ECTS.

La suite de la formation de bachelor, correspondant de 90 à 120 crédits ECTS supplémentaires, consiste en une consolidation de la formation scientifique et en l’acquisition des branches fondamentales du domaine de spécialité, tout en conservant un caractère polytechnique.

A la fin de cette période de formation de base de 3 ans, la formation de master, acquise à l’EPFL, à l’EPFZ ou dans toute autre institution de même niveau en Europe, conduira à la maîtrise d’un domaine professionnel.

L’EPFL introduira une formation de master pour toutes les sections dès l’automne 2004.

Le contrôle des connaissances revêt plusieurs formes : examens oraux ou écrits, laboratoires, travaux pratiques, projets.

Professeur Marcel Jufer

Vice-président pour la formation
INFORMATIONS GENERALES

A. Etudes de diplômes

1. Eventail des sections

Vous pourrez entrer à l'EPFL, suivant vos goûts, vos aptitudes et vos projets professionnels dans l'une des sections d'études suivantes :

- Architecture
- Chimie et Génie chimique
- Génie électrique et électronique
- Génie civil
- Génie mécanique
- Informatique
- Management de la technologie et entrepreneuriat
- Mathématiques
- Microtechnique
- Physique
- Science et génie des matériaux
- Sciences et ingénierie de l'environnement
- Sciences et technologies du vivant
- Systèmes de communication

La formation de bachelor est de 3 ans et la formation de master est de 1 an et demi à 2 ans selon la spécialité, à part pour l'Architecture qui est de 5 ans et demi pour la formation complète.

2. Inscription

Elle est fixée entre le 1er avril et le 15 juillet (sauf pour les échanges officiels).

Les demandes doivent être adressées au Service académique (voir adresse en 2ème page).

3. Périodes des cours

- Semestre d'hiver : fin octobre à mi-février
- Semestre d'été : mi-mars à fin juin

4. Périodes des examens

- Session de printemps :
 deux dernières semaines de février
- Session d'été :
 trois premières semaines de juillet
- Session d'automne :
 deux dernières semaines de septembre et première semaine d'octobre

B. Renseignements et démarches

1. Comment venir en Suisse et obtenir un permis de séjour ?

Visa

Suivant le pays d'origine, un visa est indispensable pour entrer en Suisse. Dans ce cas, il faut solliciter un visa d'entrée pour études auprès du représentant diplomatique suisse dans le pays d'origine en présentant la lettre d'admission qui est envoyée par le Service académique de l'EPFL, dès acceptation de l'admission.
Les visas de "touristes" ne peuvent en aucun cas être transformés en visas pour études après l'arrivée en Suisse.

Étudiants étrangers sans permis de séjour

A son arrivée en Suisse, l'étudiant se présente au bureau des étrangers de son lieu de résidence, avec les documents suivants :

- Passeport
 avec visa pour études si requis
- Rapport d'arrivée
 remis par le bureau des étrangers
- Questionnaire étudiant
 remis par le bureau des étrangers
- Attestation de l'École
 remise par l'EPFL à la semaine d'immatriculation
- 1 photo
 format passeport, récente
- Attestation bancaire
 d'un montant suffisant à couvrir la durée des études mentionnées sur l'attestation de l'école ou
- Relevé bancaire
 assorti d'un ordre de virement permanent ou
- Attestation de bourse suisse ou étrangère
 (le montant alloué doit obligatoirement être indiqué) ou
- Déclaration de garantie des parents
 (formule disponible au bureau des étrangers. Doit être complétée par le père ou la mère, attestée par les autorités locales et accompagnée d'un ordre de virement) ou
- Déclaration de garantie d'une tierce personne
 (formule disponible au bureau des étrangers. Le garant doit être domicilié en Suisse et prouver des moyens financiers suffisants pour assurer l'entretien de l'étudiant. Sa signature doit être légalisée par les autorités locales).
- Attestation d'assurance maladie et accident
 prouvant que les frais médicaux et d'hospitalisation sont couverts en Suisse.

La demande de permis de séjour ne sera enregistrée qu'après obtention de tous les documents requis.
INFORMATIONS GENERALES

Etudiants étrangers avec permis de séjour B

Documents à présenter dans tous les cas :
- Passeport ou autre pièce d'identité
- Questionnaire étudiant
- Attestation de l'Ecole
- Attestation bancaire ou
- Relevé bancaire ou
- Attestation de bourse ou
- Déclaration de garantie
 1. Si habitant de Lausanne
 - permis de séjour
 2. Si venant d'une commune vaudoise
 - permis de séjour avec visa de départ de la
dernière commune de domicile
 - bulletin d'arrivée
 3. Si venant d'une autre commune de Suisse
 - permis de séjour avec visa de départ de la
dernière commune de domicile
 - Rapport d'arrivée
 - 1 photo

Etudiants mariés

Le BUREAU DES ÉTRANGERS ne délivre aucun permis de séjour aux conjoints (sauf s'ils sont eux aussi
immatriculés), ni à leurs enfants. Conjoint et enfants peuvent cependant faire chaque année deux séjours de 90 jours en Suisse au titre de "touristes".

Prolongation du permis de séjour

Les étudiants étrangers régulièrement inscrits dans une université ou école polytechnique suisse obtiennent, sur demande, un permis de séjour d'une année, renouvelable d'année en année, mais limité à la durée des études. Ce permis ne peut pas être transformé en permis de séjour normal, accompagné d'un permis de travail régulier en Suisse. Les étudiants en provenance de l'étranger doivent donc quitter la Suisse peu après la fin de leurs études.

Finances, taxes de cours et dispenses

Les finances et taxes de cours s'élèvent, par semestre, à FS 603.-. De plus une taxe d'immatriculation de FS 50.- pour les porteurs d'un certificat suisse et de FS 110.- pour les porteurs d'un certificat étranger est perçue au 1er semestre à l'EPFL.

Dispenses

Des demandes de dispenses (uniquement de la finance de cours) peuvent être déposées au Service social de l'EPFL dans les premiers jours du mois de septembre précédant l'année académique concernée. Les étrangers non résidant en Suisse ne peuvent pas déposer de demande pour leur première année d'études.
Il est impératif d'assurer le financement des études avant de s'inscrire à l'EPFL, pour éviter une perte de temps, des désillusions et pour assurer une bonne intégration.

Assurance maladie et accident

L'assurance maladie et accidents est obligatoire en Suisse. Tout étudiant étranger fait s'affilier à une assurance reconnue par la Suisse. S'ils le désirent, les étudiants peuvent adhérer, à l'assurance collective de l'EPFL, la SUPRA.
Pour un séjour de courte durée et si les conditions requises sont remplies, une dérogation est possible.
En outre, il est impératif d'arriver en Suisse avec une dentition en bon état, car les frais dentaires n'étant pas pris en charge par les caisses maladie, les factures peuvent atteindre une somme considérable pour un étudiant.
Pour tout renseignement et adhésion, prière de s'adresser au Service social (voir adresse en page de couverture).

Office de la mobilité

L'office de la mobilité organise les échanges d'étudiants.
- Il informe les étudiants de l'EPFL intéressés à un séjour d'études dans une autre Haute école suisse ou étrangère.
- Il prépare l'accueil des étudiants étrangers venant accomplir une partie de leurs études à l'EPFL
(logement, renseignements pratiques, etc...).

Les heures de réception figurent en page de couverture.

Service social

Pour tout conseil en cas de difficultés économiques, administratives ou personnelles, les étudiants peuvent consulter le Service social de l'EPFL.
Les heures de réception figurent en page de couverture.
INFORMATIONS GENERALES

0 Documents officiels pendant les études

Calendrier académique

Ce document, joint à l'admission définitive, donne toutes les dates et échéances indispensables pour les études.

Horaire des cours

Ce document est à disposition au Service académique ou à l'adresse Internet http://daawww.epfl.ch/daa/sac/. Il est édité chaque semestre et contient, pour chaque section, le placement à l'horaire et le lieu où se déroulent les cours, exercices et travaux pratiques.

7 Langues d'enseignement

Une bonne connaissance du français est indispensable pour les études de bachelor. La langue d'enseignement au niveau de master est essentiellement en anglais.

Un cours intensif de français est organisé de mi-septembre à mi-octobre pour les nouveaux étudiants étrangers.

C. Vie pratique

1 Coût des études

Budget

Le budget annuel indicatif est le suivant :

- frais de scolarité et matériel FS 2'500.-
- Logement FS 6'000.-
- Nourriture FS 6'000.-
- Habits et effets personnels FS 2'000.-
- Assurances, transports, divers FS 3'500.-
- Total FS 20'000.-

Frais courant d'entretien

Les frais de nourriture se montent au minimum à FS 500.- par mois.
Les coûts du matériel scolaire varient sensiblement. En début de formation, les étudiants doivent parfois s'équiper pour le dessin, acheter des machines à calculer, etc. Les cours polyvalents édités à l'EPFL contribuent à limiter les frais, mais il faut compter un minimum de FS 1'200.- par an pour pouvoir étudier sans être trop dépendant des bibliothèques et du matériel d'autrui.
Les loyers représentent un montant indispensable du budget pour maintenir un équilibre personnel et étendre sa culture générale. Il faut compter environ FS 30.- pour aller au spectacle et entre FS 12.- et FS 15.- pour une place au cinéma.

D'autres frais sont importants dans un budget mensuel : le logement, les finances de cours, les transports, l'assurance maladie et accident (voir chapitres correspondants).

2 Logement

Lausanne est une agglomération de 200'000 habitants. Malgré sa taille, elle ne possède pas de campus universitaire et il appartient à chacun de se trouver un logement.

Service du logement

A disposition des étudiants de l'Université de Lausanne et de l'EPFL, le Service des affaires socioculturelles de l'Université de Lausanne est situé dans le bâtiment du Rectorat et de l'Administration. Ce service centralise les offres de chambres chez l'habitant, en ville ou à proximité des deux Hautes Ecoles. Il peut s'agir de chambres dépendantes (dans un appartement privé) ou de chambres indépendantes (prix entre FS 400.- et FS 500.-). Les heures de réception figurent en 2ème page.

Foyers pour étudiants

Ils offrent plus de 1000 lits pour une communauté universitaire de 12'000 étudiants (Université de Lausanne + EPFL). Dans les foyers, les loyers mensuels varient entre FS 300.- et FS 600.-. La Fondation Maisons pour étudiants gère plusieurs immeubles comprenant des chambres meublées ou non et des studios. Pour tous renseignements et réservations concernant ces foyers, réservés aux étudiants, s'adresser à la Direction des Maisons pour étudiants ou au Foyer catholique universitaire dont les adresses figurent en 2ème page.

Studios et appartements

Les prix des studios et appartements commencent dès FS 600.- par mois. Il faut savoir que la gérance ou le propriétaire demandent, avant d'entrer dans le logement, une garantie de trois mois de loyer. Ainsi, pour obtenir la location d'un studio à FS 600.- par mois, la garantie s'élève à FS 1'800.- plus le loyer du premier mois, soit au total FS 2'400.-. La plupart des logements sont loués non meublés. Pour un aménagement sommaire, avec du mobilier neuf, mais modeste, il faut compter FS 2'500.-. Beaucoup d'étudiants ont recours à la récupération et aux occasions, ce qui diminue quelque peu ce montant. Les cuisines sont habituellement équipées d'un petit frigo, d'une cuisinière et de placards.

Il est d'usage que les immeubles assez récents soient pourvus d'une buanderie collective où les locataires
INFORMATIONS GENERALES

utilisent une machine à laver à tour de rôle, contre paiement.
De plus, il faut absolument faire établir un devis avant de commander des travaux tels que mise en place de moquette et rideaux, d'installations électriques et du téléphone, pour éviter des surprises désagréables.
Pour l'usage du téléphone, les PTT demandent une garantie jusqu'à FS 2'500.-. L'abonnement mensuel coûte de FS 20.- à FS 30.-.

3 Restauration

Divers restaurants et cafétérias sont à la disposition des étudiants de l'EPFL, qui peuvent y prendre leur repas de midi et du soir. Les étudiants peuvent acheter à l'AGEPOLY des coupons-repas, leur donnant droit à un prix de FS 6.50 par repas (valeur octobre 1999).

4 Travaux rémunérés

Les possibilités pour un étudiant de payer ses études en travaillant sont soumises à trois types de contraintes.

Contrainte légale

La Police cantonale des étrangers autorise les étudiants étrangers, 6 mois après leur arrivée, à travailler au maximum 15 heures par semaine, pour autant que cet emploi ne compromette pas les études. Un permis de travail spécial est alors accordé. La police exerce un contrôle constant et efficace sur les étudiants-travailleurs. Les démarches sont à faire auprès du Service social.

Contrainte académique

L'horaire compte environ 32 heures de cours, exercices et travaux pratiques par semaine auxquelles il convient d'ajouter 15 à 20 heures de travail personnel régulier (sans compter les préparations d'examens). Avec une charge de 50 à 60 heures par semaine, il est difficile de gagner beaucoup d'argent en parallèle.

Contrainte conjoncturelle

Comme partout, la récession se fait sentir en Suisse et il n'est pas facile de trouver du travail. Voici un aperçu du salaire-horaire pour certains travaux :

- baby-sitting FS 8.-/heure
- traductions FS 35.-/page
- magasinier FS 16.-/heure
- leçons de math. FS 20.-/heure
- assistant-étudiant FS 21.-/heure

Un panneau d'affichage répertoriant des offres de petits travaux se trouve à l'extérieur du Service social.

5 Transports

Le site principal de l'EPFL et de l'Université de Lausanne est relié à la gare CFF de Renens et à la place du Flon au centre de Lausanne par le Métro-Ouest (TSOL).

6 Parkings

Des parkings sont à disposition des étudiants sur le site de l'EPFL, moyennant l'acquisition au bureau "Accueil-information" (centre Midi - 1er étage) d'une vignette semestrielle de FS 75.- ou annuelle de FS 150.- (valeurs janvier 95).

7 Aide aux études

Les bibliothèques

Pour compléter les possibilités de la Bibliothèque Centrale et les connaissances à acquérir, de nombreux départements et laboratoires disposent de leur propre bibliothèque.

Les salles d'ordinateurs

Certains cours ont lieu dans des salles équipées d'ordinateurs qui sont souvent laissées en libre accès en dehors des heures de cours.

8 Commerces

Pour faciliter la vie étudiante, certains commerces se sont installés sur le site de l'EPFL :
- une poste
- une banque
- une agence d'assurance
- une épicerie
- une agence de voyage
- une antenne des CFF
- une librairie.

9 Centre sportif universitaire

Pour un nouvel art de vivre, pour joindre l'utile à l'agréable, pour profiter d'un site sportif exceptionnel, 55 disciplines sportives vous sont proposées avec la collaboration de 120 moniteurs.

Une brochure complète de toutes les disciplines sportives mentionnant les heures de fréquentation est à disposition des étudiants, au Service académique, chaque année au début du semestre d'hiver.
GENERAL INFORMATION

How the diploma course is organised

Following the Bologna Declaration, EPFL has been progressively introducing a new system of study since the autumn of 2003. It will enable a European coordination of degrees and courses.

The degree courses for engineers, architects and scientists at EPFL are made up of two cycles leading to two degrees.

- The Bachelor cycle, normally of three years, corresponds to 180 ECTS credits, and leads to an Academic Bachelor, which will enable the holder to finish his or her studies at EPFL or in another equivalent institution.

- The Master cycle, of one and a half to two years, depending on the choice of study leads to an EPFL Master. It corresponds to 90 – 120 credits, depending on the choice of study, including a practical project worth 30 credits.

This credit system is entirely compatible with the European Credit Transfer System (ECTS). A credit corresponds approximately to 25 – 30 hours of work by the student.

Each education year at EPFL is divided into two fourteen-week semesters, the exams not being included in these periods. The kinds of exams can vary: oral or written exams, laboratory tests, practical projects or exercises.

The 13 options available in the Bachelor degree course start by a foundation year in basic sciences (mathematics, physics, chemistry, life sciences) including an introduction to the chosen speciality option. Ten per cent of the year is devoted to human sciences.

A global pass for the first year based on the averages system (worth 60 ECTS) is obligatory before embarking on the second year.

The remaining two years of the Bachelor degree course, corresponding to 90-120 more ECTS credits, consist in consolidating basic scientific knowledge and in foundation courses for the speciality option, all the while keeping to the “polytechnic ideal”.

The first degree course of three years, is followed by the Master degree programme of one and half to two years, and will lead to the mastering of a professional domain.

All sections at EPFL will have a Master degree programme from autumn 2004. EPFL Masters will be awarded from 2005 to all who pass the complete courses of study.

Professor Marcel Jufer

Vice-président pour la formation
A. Study information

1. Departments

Diploma courses are held in the following departments:

- Architecture
- Chemistry and Chemical engineering
- Civil engineering
- Communication systems
- Computer science
- Electrical and electronics engineering
- Environmental sciences and engineering
- Life sciences and technology
- Management of technology and entrepreneurship
- Materials science and engineering
- Mathematics
- Mechanical engineering
- Microengineering
- Physics

The Bachelor cycle is normally of three years and the Master cycle, of one and a half to two years, depending on the choice of study. The complete study period for Architecture is five and a half years.

2. Enrolment

Enrolment dates are between 1st April and 15th July (except for official exchanges).

Applications must be addressed to the Service académique, av. Piccard, EPFL - Ecublens, CH - 1015 LAUSANNE.

3. Course dates

Winter semester : end October to mid-February
Summer semester : mid-March to end June

4. Exam dates

- Spring session: last two weeks of February
- Summer session: first three weeks of July
- Autumn session: two last weeks of September and first week of October

B. Information and procedure

1. Foreign student permits and visas for entering Switzerland

Visas

Depending on the future student’s country of origin, a visa is indispensable for entry into Switzerland. A student visa can be obtained from the Swiss diplomatic representative in the country of origin by showing the acceptance letter sent by the EPFL Service académique (which is sent at the end of the full admission procedure). Tourist visas cannot be changed to student visas once in Switzerland.

Foreign students without resident permits

On arrival in Switzerland, the student must report to the “bureau des étrangers” of the town or village in which he or she will be living, with the following documents:

- Passport with student visa if necessary
- Arrival report supplied by the “bureau des étrangers”
- Student questionnaire supplied by the “bureau des étrangers”
- Proof of studentship provided by the EPFL during the admissions week
- 1 recently taken passport photo
- Bank statement indicating an amount sufficient to cover the costs of studies mentioned on the proof of studentship or
- Bank form with standing order or
- Proof of a Swiss or foreign grant (the amount allocated must be indicated) or
- Parental guarantee (this form can be obtained from the “bureau des étrangers”. It must be completed by the mother or father, certified by the local authorities and attached to a standing order or
- Guarantee statement (this form can be obtained from the “bureau des étrangers”. The guarantor must be living in Switzerland and be able to prove he or she has the financial means to support the student. His or her signature must be certified by the local authorities
- Proof of medical and accident insurance for Switzerland

The student permit, which costs about FS 100.- for the first year, will only be issued after all the documents have been provided.
GENERAL INFORMATION

Foreign students with a B permit

Documents to be provided:
- Passport or identity papers
- Student questionnaire
- Proof of studentship from the EPFL
- Bank statement or
- Bank document or
- Proof of grant or
- Guarantee statement

1. If resident in Lausanne
 - residence permit
2. If resident in the Canton of Vaud
 - residence permit with departure visa from the last commune and the visa from the present commune plus arrival certificate
3. If coming from a commune in Switzerland outside Vaud
 - residence permit with departure visa from the last commune, arrival report and 1 photo

Married students

The "Bureau des étrangers" will not issue residence permits for spouses unless they also have student status, and will not issue residence permits to students' children. However, spouses and children can visit for up to two 90-day periods as tourists in any one year.

Prolongation of student visas

Students enrolled to study at the University or EPFL will receive one-year permits, which are renewed every year for the length of the course enrolled for. This student permit cannot be changed into a regular resident permit for work purposes. Foreign students must therefore leave Switzerland on completion of their studies.

Registration, tuition fees and exemptions

The amounts mentioned below (price 04/05) are subject to modification by the Conseil des écoles polytechniques fédérales.

Registration and tuition fees

Fees must be paid before each semester by means of a Post Office payments slip, which each student will receive by post or which new students will be given during the registration week, held two weeks before the start of the autumn/winter semester. Foreign students may pay by banker's order.
The registration and tuition fees are SF 603.- per semester. In addition to this there is a supplementary fee for the first semester at the EPFL of SF 50.- for holders of a Swiss certificate and SF 110.- for holders of foreign certificates.

Exemptions

Requests for exemptions (for the registration fee only) can be made to the Social Services of the EPFL at the beginning of September before the corresponding academic year. Non-resident foreign students cannot make a request the first year. It is essential for students to ensure that they have proper financial provision for studying before enrolling at the EPFL, to avoid disappointment and wasted time as well as to ensure full integration.

3 Accident and health insurance

Students at the EPFL are legally obliged to be insured against illness and accidents with an insurance company recognised by Switzerland. It is possible for students to obtain insurance though the EPFL insurance scheme, the SUPRA.

Exceptions can be made for those students who are on very short courses.

In addition, it is important to arrive in Switzerland with teeth in good order, because dental work is not included in health insurance and it can be very expensive.

Information and application forms for insurance can be obtained through our social services office (see address on the last but one page)

4 Mobility

The "office de la mobilité" organises student exchanges.

- It provides information to those EPFL students interested in a study period either in another Swiss University or abroad
- It organises the administrative matters for foreign students coming to the EPFL on a student exchange (lodgings, practical information, etc...).

Opening hours of this office are to be found on the last but one page of this brochure.

5 Social services

The EPFL social services are available to provide advice in the case of financial, personal or administrative problems.

Opening hours for this office are to be found on the last but one page of this brochure.
GENERAL INFORMATION

Official study documents

Academic calendar

This is given at the time of admission, and contains all the essential dates for a student at the EPFL.

Timetables

They can be obtained from the Service académique or at the address Internet http://daawww.epfl.ch/daa/sac/. It is printed every semester and contains for every Department, the place and time for all lectures, exercises or practical projects.

Teaching language

An excellent knowledge of French is essential for the diploma course and most of the postgraduate courses. For some postgraduate courses English is also essential. An intensive French course is available from mid-September to mid-October for foreign students.

Information for day-to-day living

Study costs

Budget

The following annual budget will give you an idea of expenses involved in studying here:

- Fees and books SF 2,500.-
- Lodgings SF 6,000.-
- Food SF 6,000.-
- Clothing and personal items SF 2,000.-
- Insurance, transport, other.. SF 3,500.-
- Total SF 20,000.-

General costs

SF 500.- a month should be allowed for food. Books and study material costs vary considerably. At the start of the diploma course, students may have to equip themselves with drawing material, calculators, etc. Photocopies printed by the EPFL help to reduce costs, but a minimum of SF 1'200.- a year should be allowed to be able to study without being too dependent on libraries and borrowed material.

A sum has to be set aside for leisure which is an indispensable part of student life. About SF 30.- should be allowed to go to the theatre and about SF 12.- to SF 15.- to the cinema.

Other important costs in a monthly budget are: lodgings, course fees, transport, accident and illness insurance (see appropriate sections).

Lodgings

Despite the fact that the Lausanne area has a population of 200,000, there is no university campus as such and it is up to students to find their own lodgings.

Lodgings office

This function is carried out by the “Service du logement” at Admissions and Administration building (Rectorat et Administration, e-mail: logement@unil.ch). This office centralises all the offers of rooms to let, in the town or near to the University or the EPFL. These can be rooms in private homes or independent rooms (prices vary between SF 400.- and SF 500.-).

Opening hours can be found on the last but one page of this guide.

Halls of residence

There are more than 1,000 beds available for a student population of 12,000 (University and EPFL). In these halls the rent varies from SF 300.- to SF 600.-. The “Fondation Maisons” for students runs several halls of residence, which consist of furnished and unfurnished rooms as well as one-room apartments. For further information and reservations concerning these halls of residence, please contact “la Direction des Maisons pour étudiants” or the “Foyer catholique universitaire” whose addresses you will find on the last but one page of this guide.

Studies and apartments

The prices of studios and apartments start around SF 600.- a month. In addition, the renting agency will require a deposit equivalent to three months rent, returnable on departure. So to rent a studio at SF 600.- a month, the deposit will come to SF 1,800.-, in addition to the rental for the first month, coming to a total of SF 2,400.-. Most lodgings are rented non-furnished. Even cheap new furnishings will cost at least SF 2,500.-. Many students use second-hand furnishings. Kitchen areas are usually equipped with a small fridge, cooker and cupboard space. Most apartment blocks have a communal laundry room where a coin-operated washing machine is available as well as drying space.

To avoid any unpleasant surprises, it is important to ask for an estimate before going ahead with any installation of electrical equipment, telephones or carpeting etc.. The PTT (telephone company) will require a guarantee of up to SF 2,500.-. The monthly rental is SF 20.- to SF 30.-.
GENERAL INFORMATION

3 Campus restaurants

Several restaurants and cafeterias are available to EPFL students for midday and evening meals. Students can buy restaurant tickets from the AGEPOLY, allowing them to buy a meal for SF 6.50 (price as at October 1999).

4 Paid work

The possibility for students to pay their way while studying is subject to three constraints.

Legal constraint

The cantonal police for foreigners allows foreign students to work a maximum of 15 hours a week, but only six months after their arrival in Switzerland, and only if the work does not interfere with their studies. A special work permit is necessary. The police keep a close watch on student workers.

More information can be obtained from the EPFL Social services.

Studying constraint

Lectures, exercises and practical exercises amount to about 32 hours a week. In addition one must allow for 15 to 20 hours of homework (without exam preparation). So with 50 to 60 hours of work a week, it is difficult to earn much money at the same time.

General constraints

As everywhere, the recession has reduced the number of odd jobs available. Below you will find the rates for various student jobs.

- baby-sitting: SF 8.-/hour
- translations: SF 35.-/page
- shelf-filler: SF 16.-/hour
- maths lessons: SF 20.-/hour
- student assistant: SF 21.-/hour

A notice board with various job offers is to be found just outside the Social services office.

5 Transport

The main site of the EPFL and University is connected to the railway station at Renens and to the Place du Flon in the centre of Lausanne by the tube line Métro-Ouest (TSOL).

6 Car parking

Paying car parks are available at the EPFL. Students who wish to use these must buy either a semestrial (SF 75.-) or annual (SF 150.-) sticker and display it on the inside of the car's windscreen. These can be purchased from the "Accueil -information " Centre Midi - 1st floor.

7 Study help

Libraries

In addition to the main library (BC) there are also a number of Departments and laboratories which have their own libraries.

Computer rooms

Some courses are given in rooms equipped with computers and these rooms are often left open for student use out of class hours.

8 Shops

- To make student life more convenient there are several shops on-site:
 - post-office
 - bank
 - insurance agent
 - grocery
 - travel agent
 - railway agent
 - bookshop.

9 University sports facilities

In order to enjoy time away from studying a beautiful sports centre is available, staffed by 120 teachers. There are 55 sports to chose from.

A complete brochure detailing all these sports and giving dates and times is available to students from the Service académique at the start of the autumn term.
CALENDRIER ACADEMIQUE 2004 - 2005

IMPORTANT
Si les circonstances l'exigent, ce document peut être soumis à modification

ABREVIATIONS
SAC : Service académique
SOC : Service d'Orientation et Conseil

DURÉE DES SEMESTRES
HIVER : du 18 octobre 2004 au 4 février 2005 = 14 semaines
ETE : du 7 mars 2005 au 17 juin 2005 = 14 semaines

PERIODES DES EXAMENS EN 2004
Session de printemps : 7 février 2005 au 26 février 2005
Session d'été : 27 juin 2005 au 16 juillet 2005
Session d'automne : 20 septembre 2005 au 8 octobre 2005

PERIODES D'INSCRIPTION AUX COURS EN 2003/2004
Voir page WEB du Service académique :
http://daawww.epfl.ch/daa/sac/dates_importantes.htm

PERIODES D'INSCRIPTION AUX EXAMENS EN 2003/2004
Voir page WEB du Service académique :
http://daawww.epfl.ch/daa/sac/dates_importantes.htm

SITES WEB
Le calendrier académique se trouve sur le site Internet du Service académique :
http://www.epfl.ch/sac
L'horaire des cours se trouve à l'adresse suivante sur Internet :
http://infowww.epfl.ch/Horaires/Horaires.html

BRANCHES D'EXAMENS
Pour toutes les branches d'examens choisies hors de votre plan d'études, vous devez vous assurer personnellement que la branche est bien examinée lors de la session choisie (voir livret des cours) et vous adresser directement auprès de l'enseignant pour fixer une date d'examen

DELAIS
En cas de non-respect, par un étudiant, d'un délai prescrit, une taxe de Fr. 50.-- sera perçue, conformément à l'Ordonnance sur les taxes perçues dans le domaine des Ecoles Polytechniques Fédérales
Les crédits ECTS sont acquis de façon cumulative selon les conditions définies par l’ordonnance du 14 juin 2004 sur le contrôle des études. Les règlements d’application du contrôle des études visés à l’art. 6, al. 1, de ladite ordonnance définissent le nombre de crédits attribué à chaque branche d’études.

Les plans d’études visés à l’art. 6, al. 2 de l’ordonnance sur le contrôle des études sont conçus de façon à permettre l’acquisition de 60 crédits ECTS par année académique.

Art. 5 Nombre de crédits ECTS requis

A réussi le bachelor l’étudiant qui a acquis 180 crédits ECTS conformément à l’ordonnance du 14 juin 2004 sur le contrôle des études et aux règlements d’application visés à l’art. 6, al. 1, de ladite ordonnance.

A réussi le master l’étudiant qui a acquis, en sus du bachelor, 60 crédits ECTS, respectivement 90 crédits ECTS pour les sections Architecture, Génie civil, Sciences et ingénierie de l’environnement et Systèmes de communication, et réussi le projet de master représentant 30 crédits, conformément à l’ordonnance sur le contrôle des études et aux règlements d’application.

Section 2 Bachelor

Art. 6 Etapes de formation

Le bachelor de l’EPFL est composé de deux étapes successives de formation :

a. le cycle propédeutique;

b. le cycle bachelor.

Ces deux cycles doivent être réussis en l’espace de six ans.

Art. 7 Cycle propédeutique

Le cycle propédeutique s’étend sur une année d’études et se termine par l’examen propédeutique.

Il a pour objectif la vérification des connaissances de base, l’acquisition des compétences nécessaires pour la suite de la formation en sciences naturelles et une initiation dans les sciences humaines et sociales.

Sa durée ne peut excéder deux ans.

La réussite de l’examen propédeutique permet d’acquérir 60 crédits ECTS et est la condition pour entrer au cycle bachelor.

Art. 8 Cycle bachelor

Le cycle bachelor s’étend sur deux années d’études.

Il a pour objectif l’acquisition des bases scientifiques générales et spécifiques au domaine d’études et à un secteur des sciences humaines et sociales.

Sa durée ne peut excéder quatre ans.

Le cycle bachelor est réputé réussi par l’acquisition de 120 crédits ECTS. La réussite du cycle bachelor est la condition pour entrer au cycle master.

Section 3 Master

Art. 9 Etapes de formation

Le master est composé de deux étapes successives de formation :

a. le cycle master;

b. le projet de master.

Ces deux étapes doivent être réussies en l’espace de:

a. trois ans lorsque le cycle master comporte 60 crédits;

b. quatre ans lorsque le cycle master comporte 90 crédits.

RS ...
Art. 10 Cycle master

1 Il a pour objectif l’acquisition des connaissances spécifiques du domaine d’études permettant la maîtrise de la profession, ainsi que l’étude d’une discipline des sciences humaines et sociales.

2 La durée du cycle master de 60 crédits ECTS est d’une année, mais ne peut excéder deux ans ; celle du cycle de 90 crédits ECTS est d’une année et demie, mais ne peut excéder trois ans.

3 Le cycle master est réputé réussi par l’acquisition de 60 ou 90 crédits ECTS.

Art. 11 Projet de master

1 La réussite du projet de master permet d’acquérir 30 crédits ECTS.

2 La réussite du cycle master est une condition pour entamer le projet de master. Le vice-président pour les affaires académiques peut accorder des dérogations, après avoir consulté le directeur de section.

Section 4 Durées de formation

Art. 12 Conditions liées aux durées

1 Les crédits requis doivent être acquis dans les durées fixées pour chaque cycle de formation par la présente ordonnance. Les études ne peuvent être interrompues entre le cycle propédeutique et le cycle bachelor, ni entre le cycle master et le projet de master.

2 En dérogation à l’al. 1, le vice-président pour les affaires académiques peut prolonger la durée maximale d’un cycle de formation ou accorder une interruption entre deux cycles à un étudiant qui fait valoir un motif valable, notamment une longue maladie, une maternité, une période de service militaire, dès qu’il en a connaissance et avant l’échéance de la durée maximale.

Section 5 Autres modalités

Art. 13 Mobilité

1 Au titre de la mobilité, l’EPFL peut autoriser les étudiants à étudier un semestre ou un an dans une autre haute école, ou à faire le projet de master dans une autre haute école, dans le secteur public ou dans l’industrie, en restant immatriculés à l’EPFL. Les contrôles des acquis passés avec succès dans une autre haute école sont pris en compte pour autant que le programme d’études ait été préalablement fixé avec le responsable du domaine d’études de l’EPFL.

2 Les directives du vice-président pour les affaires académiques s’appliquent.

Art. 14 Modification du droit en vigueur

La modification du droit en vigueur est réglée dans les annexes II et III.

Art. 15 Dispositions transitoires

1 Le diplôme est décerné jusqu’au 31 décembre 2004.

2 Les titres de bachelor et de master sont décernés à partir du 1er janvier 2005.

Art. 16 Entrée en vigueur

1 La présente ordonnance entre en vigueur le 18 octobre 2004, à l’exception de l’al. 2.

2 L’annexe II entre en vigueur le 1er janvier 2005.

Au nom de la Direction de l’Ecole polytechnique fédérale de Lausanne :

Le président :

Le vice-président pour la formation

Professeur Patrick Aebischer
Professeur Marcel Jufer
Annexe I (art. 3, al. 5)
Titres et désignations professionnelles

<table>
<thead>
<tr>
<th>Bachelor et master</th>
<th>Sections / spécialisations</th>
<th>Désignation professionnelle accompagnant le master</th>
</tr>
</thead>
</table>
| Bachelor of Science BSc
Master of Science MSc | Génie civil
Civil Engineering | Ingénieur civil (ing. civ. dipl. EPF) |
| Bachelor of Science BSc
Master of Science MSc | Sciences et ingénierie de l'environnement
Environmental Sciences and Engineering | Ingénieur en environnement (ing. env. dipl. EPF) |
| Bachelor of Science BSc
Master of Science MSc | Génie mécanique
Mechanical Engineering | Ingénieur mécanicien (ing. méc. dipl. EPF) |
| Bachelor of Science BSc
Master of Science MSc | Microtechnique
Microengineering | Ingénieur en microtechnique (ing. microtechn. dipl. EPF) |
| Bachelor of Science BSc
Master of Science MSc | Génie électrique et électronique
Electrical and Electronic Engineering | Ingénieur électrique (ing. él. dipl. EPF) |
| Bachelor of Science BSc
Master of Science MSc | Systèmes de communication
Communication Systems | Ingénieur en systèmes de communication (ing. sys. com. dipl. EPF) |
| Bachelor of Science BSc
Master of Science MSc | Physique
Physics | Physicien (phys. dipl. EPF) ou à choix du titulaire
Ingénieur physicien (ing. phys. dipl. EPF) |
| Bachelor of Science BSc
Master of Science MSc | Chimie
Chemistry
Chimie moléculaire et biologique
Molecular and Biological Chemistry
Génie chimique et biologique
Chemical and Biochemical Engineering | Chimiste (chim. dipl. EPF)
Ingénieur chimiste (ing. chim. dipl. EPF) |
| Bachelor of Science BSc
Master of Science MSc
Master of Science MSc | Mathématiques
Mathematics
Mathématiques
Mathematics
Ingénierie mathématique
Mathematical Sciences | Mathématicien (math. dipl. EPF)
Ingénieur mathématicien (ing. math. dipl. EPF) |
| Bachelor of Science BSc
Master of Science MSc | Informatique
Computer Science | Ingénieur informaticien (ing. info. dipl. EPF) |
| Bachelor of Science BSc
Master of Science MSc
Master of Science MSc | Science et génie des matériaux
Materials Science and Engineering | Ingénieur en science des matériaux (ing. sc. mat. dipl. EPF) |
| Bachelor of Arts BA
Master of Arts MA | Architecture
Architecture | Architecte (arch. dipl. EPF) |
| Bachelor of Science BSc
*Master of Science MSc | Sciences et technologies du vivant
Life Sciences and Technology | Ingénieur en sciences et technologies du vivant (ing. sc. viv. dipl. EPF) |
| *Master of Science MSc | Génie biomédical
Biomedical Engineering | Ingénieur biomédical (ing. biomed. dipl. EPF) |
| **Master of Science MSc | Management de la technologie et entrepreneuriat
Management of Technology and Entrepreneurship | Ingénieur en management de la technologie et entrepreneuriat (ing. manag. techn. entrep. dipl. EPF) |

* à partir de 2006
** ce master n’est ouvert qu’aux titulaires d’un MSc ou d’un MA en architecture
Ordonnance sur le contrôle des études menant au bachelor et au master à l'Ecole polytechnique fédérale de Lausanne
(Ordonnance sur le contrôle des études)
du 14 juin 2004

La Direction de l'Ecole polytechnique fédérale de Lausanne (EPFL),
vu l'art. 3, al. 1, let. b. de l'ordonnance du 13 novembre 2003 sur l'EPFZ et l'EPFL1;
arrête:

Chapitre 1 Dispositions générales

Section 1 Objet et champ d’application

Art. 1 Objet
La présente ordonnance arrête les principes régissant l'organisation du contrôle des études à l'Ecole polytechnique fédérale de Lausanne (EPFL).

Art. 2 Champ d’application

1 La présente ordonnance s'applique à la formation menant au bachelor et au master de l'EPFL.
2 Dans la mesure où la direction de l'EPFL n'a pas édicté de règles particulières, les art. 8, 10, 14, 15, et 18 à 20 s'appliquent également :
 a. aux examens du cours de mathématiques spéciales (CMS);
 b. aux examens d'admission;
 c. aux examens d'admission au doctorat et aux examens de doctorat;
 d. aux examens des programmes pré-doctoraux et doctoraux;
 e. aux examens de la formation continue, à l’exception de l’art. 8;
 f. aux examens sanctionnant les études prévues à l’art. 6, al. 1, let. i.

Section 2 Définitions générales

Art. 3 Contrôle

1 Le contrôle peut être ponctuel ou continu ou à la fois ponctuel et continu.
2 Par contrôle ponctuel, on entend l’interrogation ponctuelle portant sur une branche.
3 Par contrôle continu, on entend les exercices, laboratoires et projets.
4 Le contrôle ponctuel ou continu est obligatoire lorsque la note obtenue est prise en compte dans le calcul de la note sanctionnant la branche.
5 Si le contrôle continu est facultatif, il contribue uniquement à augmenter la note de la branche correspondante à raison d’un point au maximum. Les enseignants ne sont pas tenus d’organiser ce type de contrôle.

1 RS 414.110.37
Art. 4 Branches

1 Une branche est une matière ou un ensemble de matières faisant l'objet d'un contrôle qui donne lieu à une note.

2 Une branche dite de semestre est une branche notée exclusivement pendant le semestre ou l'année.

3 Une branche dite d'examen est une branche notée exclusivement pendant une session d'examens.

4 Une branche dont la note résulte à la fois d'un contrôle effectué pendant le semestre ou l'année et d'un contrôle effectué pendant une session d'examens est assimilée à une branche d'examen.

Art. 5 Examens

Un examen est un ensemble d'épreuves portant sur les branches faisant l'objet d'un contrôle ponctuel ou continu, ou à la fois ponctuel et continu.

Section 3 Dispositions communes aux études de bachelor et de master

Art. 6 Règlements d'application du contrôle des études et plans d'études

1 Les règlements d'application édictés par la direction de l'EPFL définissent pour chaque section :
 a. les branches de semestre et les branches d'examen;
 b. la session pendant laquelle les branches d'examen peuvent être présentées;
 c. la nature du contrôle des branches d'examen (écrit, oral ou présentation d'un projet);
 d. la composition des blocs et des groupes de branches;
 e. les coefficients ou les crédits attribués à chaque branche;
 f. le nombre de crédits à obtenir dans chaque bloc et chaque groupe;
 g. les conditions générales applicables aux préalables;
 h. les conditions de réussite particulières;
 i. les études d'approfondissement, de spécialisation ou interdisciplinaires;
 j. les régimes transitoires applicables aux modifications des plans et règlements d'études.

2 Ils sont accompagnés du plan d'études de l'année académique édicté par la direction de l'EPFL.

Art. 7 Livrets des cours

Les livrets des cours publiés par les sections indiquent :
 a. les objectifs de formation de la section aux niveaux du bachelor et du master;
 b. le contenu de chaque matière;
 c. la nature du contrôle des branches d'examen (écrit, oral ou présentation d'un projet);
 d. les conditions liées aux préalables;
 e. la langue d'enseignement et d'examen de la branche.

Art. 8 Appréciation des épreuves

1 Les épreuves sont notées de 1 à 6, la meilleure note étant 6. Les notes en dessous de 4 sanctionnent des prestations insuffisantes. Seuls les points entiers et les demi-points sont admis. Si l'étudiant ne se présente pas à l'épreuve à laquelle il est inscrit ou s'il se présente mais ne répond à aucune question, l'épreuve est non acquise et notée NA.

2 L'épreuve non acquise et notée NA compte comme tentative de réussite.
Art. 9 Sessions d’examen, inscription, régime applicable
1 L’EPFL organise trois sessions d’examen par année académique: au printemps, en été et en automne. Ces sessions ont lieu en général en dehors des périodes de cours.
2 Le service académique organise les examens. Il fixe les dates des sessions, les modalités d’inscription et établit les horaires qu’il porte à la connaissance des intéressés.
3 Il communique la période d’inscription aux examens.
4 Les inscriptions aux diverses épreuves d’une session deviennent définitives dix jours avant le début de ladite session; dès lors qu’elles sont définitives, l’étudiant ne peut plus les modifier.
5 Seuls les résultats des épreuves auxquelles l’étudiant était inscrit définitivement sont valables.
6 En cas de modification du plan d’études et du règlement d’application, l’étudiant qui redouble est tenu de se conformer aux dispositions en vigueur, à moins que le vice-président pour les affaires académiques n’arrête des conditions de répétition particulières.

Art. 10 Interruption des examens et absence
1 Lorsque la session a débuté, l’étudiant ne peut l’interrompre que pour un motif important et dûment justifié, notamment une maladie ou un accident attesté par un certificat médical, ou une période de service militaire.
Il doit aviser immédiatement le service académique et lui présenter les pièces justificatives nécessaires, au plus tard dans les trois jours qui suivent la survenance du motif d’interruption.
2 Le vice-président pour les affaires académiques décide de la validité du motif invoqué.
3 L’invocation de motifs personnels ou la présentation d’un certificat médical après l’épreuve ne justifient pas l’annulation d’une note.

Art. 11 Langue des examens
1 Les examens se déroulent dans la langue de l’enseignement de la matière.
2 L’étudiant a le droit de répondre en français à une interrogation en anglais. L’EPFL peut lui accorder le droit de répondre en anglais si l’interrogation est en français. Dans les deux cas, une demande écrite doit être adressée à l’enseignant lors de l’inscription à l’examen.

Art. 12 Étudiants handicapés
Le vice-président pour les affaires académiques décide, sur demande d’un candidat handicapé, de la forme ou du déroulement d’un examen ou d’un projet afin de l’adapter à son handicap, ainsi que de l’utilisation de moyens auxiliaires ou de l’assistance personnelle nécessaires. Les objectifs de l’examen ou du projet doivent être garantis.

Art. 13 Enseignants
1 L’enseignant interroge l’étudiant sur les matières qu’il enseigne. S’il en est empêché, le directeur de section désigne un remplaçant.
2 Si les règlements d’application du contrôle des études n’en disposent pas autrement, l’enseignant:
 a. donne aux sections les informations nécessaires sur ses matières d’enseignement pour qu’elles soient publiées dans le livret des cours;
 b. informe le cas échéant les étudiants du contenu des matières et du déroulement des interrogations;
 c. conduit l’interrogation;
 d. prend des notes de chaque interrogation orale, des informations pouvant être demandées par la conférence des notes et, le cas échéant, par les autorités de recours;
 e. attribue les notes d’examen qu’il communique exclusivement au service académique;
 f. conserve pendant six mois les notes prises durant les interrogations orales ainsi que les épreuves écrites; en cas de recours, ce délai est prolongé jusqu’au terme de la procédure.
Art. 14 Expert

1 Pour l’interrogation orale portant sur les branches d’examen, le directeur de section désigne un expert de l’EPFL.

2 L’expert veille au bon déroulement de l’interrogation et joue un rôle d’observateur et de conciliateur; il peut, à la demande de l’enseignant, participer à la notation.

3 L’art. 13, al. 2, let. d et f, s’applique par analogie.

Art. 15 Consultation des épreuves

1 Après que le résultat lui a été notifié, l’étudiant peut consulter ses épreuves auprès de l’enseignant dans les six mois qui suivent l’examen.

2 La consultation des épreuves est réglée à l’art. 26 de la loi fédérale du 20 décembre 1968 sur la procédure administrative.

Art. 16 Commissions d’examen

1 Des commissions d’examen peuvent être mises sur pied pour les branches de semestre. L’évaluation se fait alors sur la base d’une présentation orale par l’étudiant.

2 Outre l’enseignant et l’expert, les commissions d’examen peuvent comprendre les assistants et les chargés de cours qui ont participé à l’enseignement, ainsi que d’autres professeurs.

Art. 17 Conférence des notes

1 La conférence des notes siège à l’issue de chaque session. Elle est composée du doyen de la formation menant au bachelor et au master, qui la préside, du directeur de section et du chef du service académique. Le vice-président pour les affaires académiques en est un invité permanent. Les membres de la conférence des notes peuvent se faire représenter par leur suppléant.

2 Elle statue sur les cas limites.

Art. 18 Fraude

1 Par fraude, on entend toute forme de tricherie en vue d’obtenir pour soi-même ou pour autrui une évaluation non méritée.

2 En cas de fraude, de participation à la fraude ou de tentative de fraude, le vice-président pour les affaires académiques peut décider que la branche concernée est non acquise et notée NA. Au surplus, l’ordonnance du 17 septembre 1986 sur la discipline à l’Ecole polytechnique fédérale de Lausanne s’applique.

Art. 19 Notification des résultats et communications générales

1 Le vice-président pour les affaires académiques notifie aux étudiants la décision de réussite ou d’échec à l’examen ou au projet de master.

2 La décision fait mention des notes obtenues et des crédits acquis selon le système européen de transfert et d’accumulation de crédits d’études (European Credit Transfer and Accumulation System, ECTS).

3 L’école procède aux communications ainsi qu’à la notification de décisions s’adressant à un groupe d’étudiants par voie électronique ou postale, à l’adresse de chacun des étudiants concernés.

Art. 20 Demande de nouvelle appréciation et recours administratif

1 La décision rendue par le vice-président pour les affaires académiques en vertu de la présente ordonnance ou en vertu de l’ordonnance du 14 juin 2004 sur la formation peut faire l’objet d’une demande de nouvelle appréciation dans les dix jours qui suivent sa notification. L’art. 63, al. 1, 3 et 4, de la loi fédérale du 20 décembre 1968 sur la procédure administrative est applicable par analogie à la demande de nouvelle appréciation.
2 Elle peut également faire l’objet d’un recours administratif auprès de la commission de recours interne des EPF dans les 30 jours qui suivent sa notification.

3 Les délais prévus aux al. 1 et 2 courent simultanément.

Chapitre 2 Examen du cycle propédeutique

Art. 21 Sessions d’examens

1 Deux sessions ordinaires, en été et en automne, sont prévues pour l’examen propédeutique. L’étudiant choisit la session à laquelle il désire présenter chaque branche d’examen; il doit toutefois avoir présenté l’ensemble des branches d’examen à l’issue de la session d’automne.

2 Le fait de ne pas terminer l’examen propédeutique équivaut à un échec.

3 Lorsque l’étudiant fait valoir un motif valable d’interruption de la session au sens de l’art. 10, le vice-président pour les affaires académiques peut l’autoriser à se présenter à une session extraordinaire organisée au printemps.

4 Les notes des branches examinées restent acquises si le vice-président pour les affaires académiques considère l’interruption justifiée.

5 L’étudiant admis à se présenter à la session de printemps peut être autorisé à suivre l’enseignement du semestre d’hiver supérieur sur décision du vice-président pour les affaires académiques. En cas d’échec à la session de printemps, l’étudiant reprend les études du cycle propédeutique.

Art. 22 Moyennes

Les moyennes sont calculées en pondérant chaque note par son coefficient, conformément aux règles d’application du contrôle des études.

Art. 23 Conditions de réussite

1 L’examen propédeutique est réussi lorsque l’étudiant a obtenu une moyenne générale égale ou supérieure à 4 dans chacun des deux blocs de branches:

2 La réussite de l’examen propédeutique donne lieu à 60 crédits ECTS.

Art. 24 Répétition

1 Si un étudiant a échoué à l’examen propédeutique, il peut se présenter une seconde fois, pendant les sessions ordinaires de l’année qui suit l’échec.

2 Un échec, au niveau du cycle propédeutique, subi dans une EPF ou dans une autre haute école, suisse ou étrangère, pour un même domaine d’études, équivaut à un échec à l’examen propédeutique à l’EPFL.

3 Une moyenne suffisante dans le bloc des branches d’examen ou dans celui des branches de semestre reste acquise en cas de répétition.

4 Lorsque, dans les branches de semestre, la moyenne est inférieure à 4, l’étudiant est tenu de suivre à nouveau les branches de semestre en répétant l’année.

5 Tout bloc devant être répété doit l’être dans son intégralité.

Chapitre 3 Examens du cycle bachelor et du cycle master

Art. 25 Crédits

1 Les crédits de la branche sont attribués lorsque la note obtenue est égale ou supérieure à 4 ou que la moyenne du bloc de branches à laquelle elle appartient est égale ou supérieure à 4.
Lorsque les conditions de réussite ne sont pas remplies, seules les branches pour lesquelles les notes sont inférieures à 4 peuvent être représentées conformément à l’art. 30.

Art. 26 Blocs et groupes de branches

1 Un bloc regroupe plusieurs branches. Pour chaque bloc, la totalité des crédits est accordée si la moyenne de ce bloc, calculée en pondérant chaque note par le nombre de crédits correspondants, est égale ou supérieure à 4.

2 Une branche ne peut faire partie que d’un seul bloc.

3 La moyenne est exigée pour chaque bloc. Aucune compensation entre les moyennes obtenues par bloc n’est admise.

4 Un groupe comprend plusieurs branches. Pour chaque groupe, les crédits des branches qui le composent doivent être accumulés jusqu’au nombre requis, sans compensation possible entre les notes des branches du groupe.

5 Si, pour un bloc ou un groupe, les conditions d’attribution de la totalité des crédits correspondants ne sont pas réalisées, les branches dont la note est inférieure à 4 peuvent être représentées conformément à l’art. 30.

Art. 27 Préalables

Les préalables sont les branches pour lesquelles les crédits doivent être obtenus pour pouvoir suivre d’autres matières. Ils sont définis dans les règlements d’application du contrôle des études ou dans les livrets des cours.

Art. 28 Sessions d’examen

Les règlements d’application du contrôle des études fixent les sessions ordinaires pendant lesquelles les branches d’examen peuvent être présentées.

Art. 29 Conditions de réussite

1 Les 120 crédits du cycle bachelor doivent être acquis conformément à la présente ordonnance et au règlement d’application de la section concernée.

2 Les 60 ou 90 crédits supplémentaires du cycle master doivent être acquis conformément à la présente ordonnance et au règlement d’application de la section concernée.

3 Dans le cycle bachelor, 60 crédits au moins doivent être obtenus en deux ans.

4 L’étudiant qui n’a pas acquis les crédits requis dans le délai fixé à l’al. 3, soit dans les délais fixés aux art. 6, al. 2, 7, al. 3, 8, al. 3, 9, al. 2, et 10, al. 2, de l’ordonnance du 14 juin 2004 sur la formation, a définitivement échoué au cycle, respectivement au bachelor ou au master.

Art. 30 Rétention

1 Une branche ne peut être répétée qu’une fois, l’année suivante, pendant une session ordinaire. Au surplus, une session de rattrapage peut être accordée en vertu de l’art. 31.

2 Si l’étudiant a déjà subi un échec dans une ou plusieurs branches analogues dans une autre haute école, suisse ou étrangère, le vice-président pour les affaires académiques peut limiter l’examen de cette branche à une tentative.

3 L’étudiant qui échoue deux fois dans une branche à option peut en présenter une nouvelle.

Art. 31 Rattrapage

1 L’étudiant qui a échoué à l’examen dans deux branches au plus, représentant au maximum 10 crédits ECTS, peut participer à une session de rattrapage, organisée par le directeur de la section concernée:

 a. à la fin du cycle bachelor, s’il n’a pas obtenu 120 crédits;
 b. à la fin du cycle master, s’il n’a pas obtenu 60 crédits, respectivement 90 crédits;
 c. s’il n’a pas obtenu les 30 crédits dans les études prévues à l’art. 6, al. 1, let. i.
Une branche peut être examinée une seule fois en session de rattrapage.

La conférence des notes fixe, sur proposition du directeur de section, les branches pouvant faire l’objet d’un rattrapage.

Chapitre 4 Projet de master

Art. 32 Déroulement
1 La durée du projet de master avec l’examen est d’un semestre. Le sujet est fixé ou approuvé par le professeur ou maître d’enseignement et de recherche qui en assume la direction.
2 À la demande de l’étudiant, le directeur de section peut confier la direction du projet de master à un maître rattaché à une autre section ou à un collaborateur scientifique.
3 L’examen du projet de master consiste en l’évaluation de sa présentation finale suivie d’une interrogation orale devant l’enseignant qui a dirigé le projet et un expert externe à l’EPFL désigné par l’enseignant en accord avec le directeur de section.
4 Si la rédaction du projet est jugée insuffisante, l’enseignant peut exiger que l’étudiant y remédie dans un délai de deux semaines à compter de l’interrogation orale.

Art. 33 Condition de réussite
Le projet de master est réputé réussi lorsque l’étudiant a d’une part déposé son projet dans le délai imparti et d’autre part obtenu à l’examen une note égale ou supérieure à 4.

Art. 34 Répétition
1 En cas d’échec, un nouveau projet de master peut être présenté.
2 Un second échec est éliminatoire.

Art. 35 Moyennes finales
1 La moyenne générale du cycle bachelor est calculée en pondérant chaque note par le nombre de crédits correspondants. La moyenne finale du bachelor est constituée pour un tiers de la moyenne générale du cycle propédeutique (art. 22) et pour deux tiers de la moyenne générale du cycle bachelor.
2 La moyenne générale du cycle master est calculée en pondérant chaque note par le nombre de crédits correspondants.
3 La moyenne finale du master est constituée pour moitié de la moyenne générale du cycle master et pour moitié de la note du projet de master.

Chapitre 5 Dispositions finales

Art. 36 Abrogation du droit
L’ordonnance générale du 10 août 1999 sur le contrôle des études à l’Ecole polytechnique fédérale de Lausanne7 est abrogée.

Art. 37 Dispositions transitoires
1 La durée maximale de chaque cycle de formation comprend également les semestres correspondants des études effectuées avant l’entrée en vigueur de la présente ordonnance.
2 La réussite de chacun des deux examens propédeutiques I et II est assimilée à l’acquisition de 60 crédits.

7 RO 1999 2023
3 L’acquisition de 60 crédits de 2ème cycle, correspondant aux branches de troisième année définies par le règlement d’application, constitue l’examen d’admission au cycle master et est assimilée à l’obtention du bachelor.

4 Lorsque les circonstances l’exigent, le président de l’EPFL peut rendre une décision sur le régime transitoire applicable à un cas particulier.

Art. 38 Entée en vigueur
La présente ordonnance entre en vigueur le 18 octobre 2004.

Au nom de la direction de l’Ecole polytechnique fédérale de Lausanne

Le président

Le vice-président pour la formation

Professeur Patrick Aebischer

Professeur Marcel Jufer
PLAN D'ETUDES ET COURS
DE LA SECTION SCIENCES ET
INGENIERIE DE
L'ENVIRONNEMENT

2004 - 2005
SOMMAIRE

DESCRIPTION DE LA FORMATION 31
GRILLE DU PLAN D'ETUDES 35
REGLEMENT D'APPLICATION DU CONTROLE DES ETUDES 40
CLASSIFICATION DES PAGES DE COURS PAR ORDRE ALPHABETIQUE DES ENSEIGNANTS 43

BACHELOR PROPÉDEUTIQUE 1er SEMESTRE 47
BACHELOR PROPÉDEUTIQUE 2e SEMESTRE 51
BACHELOR 3e SEMESTRE 75
BACHELOR 4e SEMESTRE 87
BACHELOR 5e SEMESTRE With English translation 103
BACHELOR 6e SEMESTRE With English translation 117
MASTER 7e SEMESTRE With English translation 133
MASTER 8e SEMESTRE With English translation 157
MASTER 9e SEMESTRE With English translation 189
LA FORMATION EN
SCIENCES ET INGENIERIE DE L'ENVIRONNEMENT

Parmi les questions majeures que l’humanité doit affronter pour préserver le futur, se trouvent les changements climatiques, la désertification, la perte de biodiversité des écosystèmes, la pollution des milieux eau-air-sol, l’augmentation des déchets, le manque d’eau potable et l’accroissement de la population mondiale, avec les problèmes de santé, d’alimentation, d’éducation qui leurs sont liés.

Dans ce contexte, les objectifs en matière de recherche consistent à quantifier les processus régissant les impacts sur les écosystèmes vivants et naturels ainsi qu’à proposer des solutions scientifiques nouvelles et des méthodologies utiles au monde professionnel.

Du point de vue de l’enseignement, la mission de la section SIE est de former des ingénieurs en environnement. Ces ingénieurs auront une vision transdisciplinaire leur permettant de résoudre les problèmes technologiques, sociaux et économiques, qui se posent en matière de gestion des ressources naturelles et d’aménagement du territoire dans la perspective d’un développement durable.

Un ingénieur en environnement saura par exemple :
- réaliser une étude d’impact sur l’environnement
- assainir des sols et des sites de décharge
- gérer un système de valorisation et d’élimination des déchets
- conduire des développements en technologie environnementale
- qualifier et contrôler l’environnement au travers de ses composantes ecotoxicologiques et toxicologiques
- mesurer et modéliser la distribution des polluants dans les écosystèmes
- réaliser un réseau d’eau potable, d’eaux usées et d’eau d’irrigation
- planifier l’aménagement urbain et rural
- mettre en place un système d’information géographique
- développer les méthodes modernes en mensuration, positionnement et navigation
- diriger un service de gestion environnementale et de la qualité
- conduire des projets dans les pays émergeants

Le défi de cette formation est qu’elle requiert à la fois une éducation de base élargie et des compétences de spécialisation transdisciplinaires. Le plan d’études se compose ainsi d’un premier cycle "Bachelor" (180 crédits) avec des cours de sciences base obligatoires, des enseignements SIE obligatoires et diverses formations optionnelles. Le second cycle "Master" (120 crédits) comprend des cours à options, des enseignements spécifiques (mineurs) et des projets interdisciplinaires. Cette formation est complétée par les « cours ENAC » joignant, dans une vision synergique, les sections d’architecture, de génie civil et des sciences et ingénierie de l’environnement. Par ailleurs, une formation en sciences humaines et sociales fait partie du cursus. Enfin à ces enseignements théoriques, viennent s’ajouter différentes formations pratiques, associant laboratoire et travail de terrain. Le cursus s’achève avec un travail pratique de master qui peut se faire en Suisse ou à l’étranger. L’ingénieur en environnement peut directement travailler en milieu professionnel ou encore accéder au brevet fédéral d’ingénieur géomètre, suivre un programme postgrade ou entreprendre une thèse.
Une formation polytechnique sur 5 ans

Bachelor

1 année propédeutique
60 crédits
Moyenne

Cycle bachelor SIE
2 ans
120 crédits

Master

Cycle master SIE
1 an et demi
90 crédits

Travail de master – 1 semestre
30 crédits

Master EPF d’ingénieur en environnement
Bachelor SIE

1ère année
Cours obligatoires

1er cycle (2 + 3 années)

2ème année

3ème année

OBLIGATOIRE

OPTIONS

- Sciences de bases (maths, physique, chimie, informatique)
- Cours de base en sciences et ingénierie de l'environnement
- Cours ENAC
- Cours sciences humaines et sociales
- Cours optionnels en sciences et ingénierie de l'environnement
Master SIE

Gestion de la pollution et écologie industrielle SIE

Biotechnologies environnementales SIE

Ingénierie des eaux, du sol et des écosystèmes SIE, GC

Géomatique SIE, GC

Développement territorial SIE, AR, GC

OBLIGATOIRE

Sciences de bases (maths, physique, chimie, informatique)
Cours de base en sciences et ingénierie de l'environnement
Cours ENAC
Cours sciences humaines et sociales
Cours optionnels en sciences et ingénierie de l'environnement
Mineurs
Travail de master

OPTIONS

Master

25%
Au 2ème cycle, selon les besoins pédagogiques, les heures d'exercices mentionnées dans le plan d'études pourront être intégrées dans les heures de cours ; les scalarités indiquées représentent les nombres moyens d'heures de cours et d'exercices hebdomadaires sur le semestre.
<table>
<thead>
<tr>
<th>Matière</th>
<th>Enseignants</th>
<th>Sections</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathématiques et Informatique :</td>
<td></td>
<td></td>
<td>c</td>
<td>e</td>
<td>p</td>
<td>c</td>
<td>e</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Analyse I+II (en français) ou</td>
<td>Buffon + Cibils</td>
<td>MA</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>Analyse I.II (en allemand)</td>
<td>Semmler</td>
<td>MA</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>Algèbre linéaire</td>
<td>Prodon</td>
<td>MA</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Géométrie</td>
<td>Semmler</td>
<td>MA</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>Instruments informatiques</td>
<td>Bonjour</td>
<td>SIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2)</td>
<td></td>
<td>(28)</td>
</tr>
<tr>
<td>Physique et Chimie :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physique générale I+II (en français) ou</td>
<td>Baldreschi+Baldreschi/Diether</td>
<td>PH</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Physique générale I+II (en allemand)</td>
<td>Gotthard+Gotthard/Harbich</td>
<td>PH</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Chimie générale (pour Géosciences)</td>
<td>Comninellis</td>
<td>CGC</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Cours de base en Sciences et ingénierie de l'environnement :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biologie I</td>
<td>Seignez</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Chimie biologique I</td>
<td>Holliger</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Géologie I.II</td>
<td>Pariaux</td>
<td>GC</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Cours spécifiques en Sciences et ingénierie de l'environnement :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmosphère et climat</td>
<td>Van den Bergh</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Écologie générale et biodiversité</td>
<td>Buttler</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Géomatique :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Géoinformation</td>
<td>Golay</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Topographie</td>
<td>Dupraz</td>
<td>SIE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Cours ENAC :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures I.II</td>
<td>Montoni/Burdet</td>
<td>GC</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Cours ENAC I</td>
<td>Cantafora/Memmiard/Parriaux/Schlaepfer</td>
<td>AR/GC/SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Cours ENAC II</td>
<td>Ogelli/Kraftmann</td>
<td>AR</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Enseignement Sciences Humaines et Sociales (SHS) :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHS : Cours d'initiation</td>
<td>Divers enseignants</td>
<td>SHS</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Totaux : Tronc commun			25	8		25	7		910
Totaux : Par semaine **			33			32			
Totaux : Par semestre			462			448			

SCIENCE ET INGENIERIE DE L'ENVIRONNEMENT

Cycle bachelor

<table>
<thead>
<tr>
<th>SEMESTRE</th>
<th>Les enseignants sont indiqués sous réserve de modification</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total heures</th>
<th>crédits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matière</td>
<td>Enseignants</td>
<td>Sections</td>
<td>c</td>
<td>e</td>
<td>p</td>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>Mathématiques et informatique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse III</td>
<td>Metzner</td>
<td>MA</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probabilité et statistique III</td>
<td>Mouniford</td>
<td>MA</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Programmation</td>
<td>Hulsaz</td>
<td>IN</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physique :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physique générale III</td>
<td>Dextler</td>
<td>PH</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cours de base en SIE :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biologie II</td>
<td>Helliger</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mécanique des fluides I</td>
<td>Amey</td>
<td>GC</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologie générale</td>
<td>Muyy</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pédologie I</td>
<td>vacat</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physique du sol I</td>
<td>Mermoud</td>
<td>SIE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Météorologie</td>
<td>Van den Bergh, Calpin</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Méthodes d'estimation</td>
<td>Mermoud</td>
<td>SIE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction au droit</td>
<td>Romy</td>
<td>UNI-FR</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cours spécifiques en SIE :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiologie et biologie des sols et des eaux</td>
<td>vacat</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimie environnementale I</td>
<td>Trabellinis/Slavénykova</td>
<td>SIE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie des procédés</td>
<td>Péringuey</td>
<td>SIE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topométrie</td>
<td>Mermoud</td>
<td>SIE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatique de l'ingénieur</td>
<td>Bonjour</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse spatiale</td>
<td>Caloz</td>
<td>GC</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Géotechnique et fondations</td>
<td>Gencer</td>
<td>GC</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Législation environnementale</td>
<td>Romy</td>
<td>UNI-FR</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td>Miel/Bradi</td>
<td>GC</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Télécommunication</td>
<td>Caloz</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options SIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Géotechnique et fondations</td>
<td>Gencer</td>
<td>GC</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonctionnement des écosystèmes</td>
<td>Butler, Gillet, Fréchouch, Rossell</td>
<td>SIE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photointérpretation</td>
<td>Koelbl</td>
<td>SIE</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cours ENAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cours ENAC III, IV</td>
<td>Muyy/Schleiss/River/Meﬆian</td>
<td>GC/SIE/AR</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semaine ENAC I (Travaux pratiques)</td>
<td>Divers enseignants</td>
<td>GC/SIE/AR</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cours à option (8 cours, max. 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biologie I *</td>
<td>Seignez</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimie biologique I *</td>
<td>Helliger</td>
<td>SIE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biotechnologie environnementale II</td>
<td>Péringuey</td>
<td>SIE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimie environnementale I+II</td>
<td>Trabellinis + de Alencastro</td>
<td>SIE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecotoxicologie, toxicologie humaine I-II</td>
<td>Morgenhauer + Becker</td>
<td>SIE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologie et réservoirs</td>
<td>Bodar</td>
<td>GC</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologie appliquée</td>
<td>Muyy</td>
<td>SIE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astronomie et localisation par satellites</td>
<td>Dupré/Merminod</td>
<td>SIE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pédologie II</td>
<td>vacat</td>
<td>SIE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochimie atmosphérique</td>
<td>Van den Bergh</td>
<td>SIE</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photogrammétrie</td>
<td>Kofel</td>
<td>SIE</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physique du sol II</td>
<td>Mermoud</td>
<td>SIE</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positionnement et cartographie</td>
<td>Kolbel/Chillede</td>
<td>SIE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systèmes d'information à référence spatiale II</td>
<td>Gelay</td>
<td>SIE</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cours 3ème cycle d'une autre section</td>
<td>Divers enseignants</td>
<td>Divers</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enseignement Sciences Humaines et Sociales (SHS) :

| SIE : Atelier I,II | Divers enseignants | SIE | 2 | 2 | | | | | | | 56 | 3 |
| SIE : Cours de spécialisation I,II | Divers enseignants | SIE | 2 | 2 | | | | | | | 56 | 5 |

Enseignement Science-Technique-Société (STS) :

Agronomie	Charlie	SIE	1	1							28	2
Economie rurale et d'entreprise I,II	Stucki, Roque	SIE	1	1							42	2
Méthodologie d'étude d'impact	de Heer	SIE	1	1							28	2

* Cours indéclassables
** Totaux par semaine représentant une moyenne et pouvant varier en fonction du choix des options.

Totaux

Totaux I / Totaux commun I	18	9	2	20	5	8	17	2	16	9	5	3	60	61
Totaux II : Par semaine **	29	33	27	28	28	28								
Totaux III / Totaux par semestre	406	462	378	392										

c = cours ; e = exerices ; p = branches pratiques () : facultatif en italique ; cours à option / : enseignement partagé + : enseignement séparé à l'horaire
<table>
<thead>
<tr>
<th>SEMESTRE</th>
<th>Enseignants sous réserve de modification</th>
<th>Sections</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Horaire</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matière</td>
<td></td>
<td></td>
<td>c</td>
<td>e</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COURS OBLIGATOIRES :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projet UE ENAC/SIE (1 projet à effectuer à l’un des trois semestres)</td>
<td>Divers enseignants</td>
<td>AR/GC/SIE</td>
<td>5</td>
<td>70</td>
<td>4</td>
<td>420</td>
<td>28</td>
</tr>
<tr>
<td>Projet STS</td>
<td>Gillard (responsable)</td>
<td>STS</td>
<td>2</td>
<td>2</td>
<td>70</td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td>Droit : contrats et responsabilité professionnelle</td>
<td>Romy</td>
<td>SIE</td>
<td>2</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eco-conception et écologie des systèmes industriels</td>
<td>Joliet + Erkman</td>
<td>SIE</td>
<td>2</td>
<td>42</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecologie des écosystèmes et du paysage</td>
<td>Butter/forget/ues/Ganet/Golay,SIE</td>
<td>2</td>
<td>42</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modélisation environnementale</td>
<td>Bey</td>
<td>SIE</td>
<td>2</td>
<td>42</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIG pour l’environnement</td>
<td>Golay</td>
<td>SIE</td>
<td>1</td>
<td>42</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental statistics</td>
<td>Parslange</td>
<td>SIE</td>
<td>2</td>
<td>42</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Théorie du territoire I, II</td>
<td>Schuler/Macquat/Golay/Lévy</td>
<td>AR/SIE</td>
<td>2</td>
<td>56</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTIONS (à choisir dans la liste ci-dessous) :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINEURS (à choisir dans une unique offre de mineur) :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technologies environnementales</td>
<td>Leterrier</td>
<td>MX</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recyclage des matériaux</td>
<td>Favrat</td>
<td>GM</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traitement thermique des déchets industriels : techniques d’opération</td>
<td>Van den Bergh</td>
<td>SIE</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>70</td>
<td>5</td>
</tr>
<tr>
<td>Impacts et risques environnementaux</td>
<td>Kytzna</td>
<td>ETHZ</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse des flux de matières</td>
<td>Jollet + Becker</td>
<td>SIE</td>
<td>1</td>
<td>84</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse et modélisation du risque 1/11</td>
<td>De Alcantara/Margot/Penninck</td>
<td>SIE</td>
<td>1</td>
<td>84</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissemination et exposition des substances chimiques</td>
<td>Becker/Guilmin</td>
<td>SIE/IST</td>
<td>2</td>
<td>84</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact des polluants sur les écosystèmes et au travail</td>
<td>Knopfel</td>
<td>IDEAP</td>
<td>1</td>
<td>84</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management environnemental</td>
<td>Jollet, Erkman</td>
<td>SIE</td>
<td>1</td>
<td>56</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Biotechnologies environnementales</td>
<td>Resp. Péringier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Génie et modélisation des bioprocédés de l’environnement 1/11</td>
<td>Péringier/Decourt</td>
<td>SIE</td>
<td>2</td>
<td>84</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production et contrôle de l’eau potable</td>
<td>Ribi</td>
<td>SIE</td>
<td>2</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remédiation des sols et des nappes 1/11</td>
<td>Sauberli/Holliger/Schwarz</td>
<td>SIE</td>
<td>2</td>
<td>84</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traitement biologique des déchets et effluents gazeux</td>
<td>Péringier</td>
<td>SIE</td>
<td>2</td>
<td>56</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traitement des eaux usées industrielles</td>
<td>Pulgar</td>
<td>SIE</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traitement des eaux usées urbaines 1/11</td>
<td>Péringier/Holliger</td>
<td>SIE</td>
<td>2</td>
<td>84</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ingénierie des eaux, du sol et des écosystèmes</td>
<td>Resp. Musy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-ingénierie des eaux et des systèmes naturels 1/11*</td>
<td>Boillat + Lachat/Forget</td>
<td>SIE/GC</td>
<td>1</td>
<td>84</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changements climatiques et impacts</td>
<td>Merou/Man Den Bergh</td>
<td>SIE</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation des sols et gestion des systèmes naturels 1,11*</td>
<td>Gillet/Guenat/Buffler</td>
<td>SIE</td>
<td>2</td>
<td>70</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestion du régime hydrique des sols 1/11</td>
<td>Merou</td>
<td>SIE</td>
<td>3</td>
<td>2</td>
<td>70</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Gestion intégrée des eaux 1/11</td>
<td>Tarnaud/Comin/Sokolova</td>
<td>SIE</td>
<td>1</td>
<td>84</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydro-géo-informatique</td>
<td>Soutier/Pointet</td>
<td>SIE</td>
<td>3</td>
<td>56</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Écologie numérique</td>
<td>Buffler/Gillet</td>
<td>SIE</td>
<td>3</td>
<td>42</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologie et systèmes hydrauliques des milieux urbanisés 1/11*</td>
<td>Hingray + Boillat</td>
<td>SIE/GC</td>
<td>3</td>
<td>84</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risques hydrologiques et aménagements</td>
<td>Musy/Ancey</td>
<td>SIE/GC</td>
<td>3</td>
<td>56</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCIENCES ET INGENIERIE DE L'ENVIRONNEMENT

<table>
<thead>
<tr>
<th>SEMESTRE</th>
<th>Enseignants sous réserve de modification modifications</th>
<th>Sections</th>
<th>Heures</th>
<th>CR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matière</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
<td>e</td>
<td>p</td>
</tr>
<tr>
<td>5. Cours optionnels en développement territorial***</td>
<td>Resp. Golay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Théorie urbaine I, II**</td>
<td>Copato Lanza</td>
<td>AR</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Environnement naturel, architectural et construit : questions d'histoires</td>
<td>Frey P</td>
<td>AR</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gestion foncière et droit</td>
<td>Prélaz-Droux/Remy</td>
<td>SIE</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>Sociologie urbaine**</td>
<td>Kaufmann</td>
<td>AR</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Ville et mobilité**</td>
<td>Kaufmann</td>
<td>AR</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Transport et télématique</td>
<td>Dumont/Mattonberger</td>
<td>GC</td>
<td>2</td>
<td>42</td>
</tr>
<tr>
<td>Aménagement du territoire</td>
<td>Ramley/Razicka</td>
<td>AR</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>UE C : Aménagement urbain, mobilité et environnement**</td>
<td>Schulen/Macquai/Camacho</td>
<td>AR</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>UE D : Territoire et société**</td>
<td>Kaufmann/Pedrazzini/ Schulau/Pfugger/Noschin</td>
<td>AR</td>
<td>3</td>
<td>84</td>
</tr>
<tr>
<td>UE J : Temps, territoire et paysage**</td>
<td>Copato Lanza/Beuch</td>
<td>AR</td>
<td>3</td>
<td>84</td>
</tr>
</tbody>
</table>

6. Autres cours optionnels

| Option STS de base : selon programme de l'Ecole | Divers enseignants | STS | 28 | 2 |
| Option STS de base : selon programme de l'Ecole | Divers enseignants | STS | 28 | 2 |

* Les cours I et II ne peuvent pas être pris séparément
** Enseignement dispensé par la section d'architecture, programme sur 12 semaines
RÈGLEMENT D'APPLICATION DU CONTRÔLE DE LA SECTION DES SCIENCES ET INGENIERIE DE L'ENVIRONNEMENT (sessions de printemps, d'été et d'automne 2005) du 17 mai 2004

La direction de l'Ecole polytechnique fédérale de Lausanne

vu l'ordonnance sur les formations menant au bachelor et au master de l'EPFL,

vu l'ordonnance sur le contrôle des études menant au bachelor et au master à l'EPFL,

arrêté

Article premier - Champ d'application

Le présent règlement est applicable aux examens de la section des sciences et ingénierie de l'environnement de l'EPFL dans le cadre des études de bachelor et de master.

Art. 2 – Étapes de formation

1. Le bachelor est composé de deux étapes successives de formation :
 - le cycle propédeutique d’une année dont la réussite se traduit par 60 crédits ECTS acquis en une fois, condition pour entrer au cycle bachelor.
 - le cycle bachelor s’étendant sur deux ans dont la réussite implique l’acquisition de 120 crédits, condition pour entrer au master.

2. Le master est composé de deux étapes successives de formation :
 - le cycle master d’une durée d’un an et demi dont la réussite implique l’acquisition de 90 crédits, dont 30 crédits d’un mineur, condition pour effectuer le projet de master.
 - le projet de master d’une durée de 4 mois dont la réussite implique l’acquisition de 30 crédits.

Art. 3 - Bachelor et master : dispositions transitoires

1. L'étudiant qui a passé avec succès l'examen propédeutique avant la rentrée académique 2004-2005 poursuit ses études selon le plan d'études du cycle bachelor (chapitre 2 du présent règlement).

2. L'étudiant qui a passé avec succès l'examen propédeutique II avant la rentrée académique 2004-2005 poursuit ses études selon le plan d'études de la 3e année (chapitre 3 du présent règlement).

3. L'étudiant qui a échoué l'examen propédeutique II et qui est autorisé à entreprendre une seconde tentative poursuit ses études en commençant le cycle bachelor. La seconde tentative consiste à réussir l'examen de 2ème année (art. 5) en une année.

4. L'étudiant ayant obtenu 60 crédits de 3ème année avant la rentrée 2004-2005 commence ces études de master selon le présent règlement.

5. L'étudiant ayant échoué son examen d'admission au travail pratique de diplôme avant la rentrée académique 2004-2005 représente, en seconde tentative, pour les branches dont la note est inférieure à 4 et qu'il est autorisé à répeter, des branches du plan d'étude 2004-2005 jugées équivalentes selon la direction de la section.

Chapitre 1 : Cycle propédeutique

Art. 4 - Examen propédeutique

L'examen propédeutique est composé du bloc des branches d'examen et du bloc des branches de semestre :

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Branches d'examen (session été ou automne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analyse I,II (écrit)</td>
</tr>
<tr>
<td>1</td>
<td>Algèbre linéaire (écrit)</td>
</tr>
<tr>
<td>1</td>
<td>Géométrie (écrit)</td>
</tr>
<tr>
<td>1</td>
<td>Physique générale I,II (écrit)</td>
</tr>
<tr>
<td>1</td>
<td>Chimie générale (pour géosciences) (écrit)</td>
</tr>
<tr>
<td>1</td>
<td>Chimie biologique I et biologie I (écrit)</td>
</tr>
<tr>
<td>1</td>
<td>Géologie I,II (écrit)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Branches de semestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Atmosphère et climat</td>
</tr>
<tr>
<td>1</td>
<td>Ecologie générale et biodiversité (écrit)</td>
</tr>
<tr>
<td>1</td>
<td>Topographie et Géoinformation (écrit)</td>
</tr>
<tr>
<td>1</td>
<td>Cours ENAC I,II (hiver + été)</td>
</tr>
<tr>
<td>1</td>
<td>Structures I,II (hiver + été)</td>
</tr>
<tr>
<td>0.25</td>
<td>SHS: Cours d'initiation 1 (hiver)</td>
</tr>
<tr>
<td>0.25</td>
<td>SHS: Cours d'initiation 2 (hiver)</td>
</tr>
<tr>
<td>0.25</td>
<td>SHS: Cours d'initiation 3 (été)</td>
</tr>
<tr>
<td>0.25</td>
<td>SHS: Cours d'initiation 4 (été)</td>
</tr>
</tbody>
</table>

Chapitre 2 : Cycle bachelor

Art. 5 – Examen de 2ème année

1. Le bloc 1 “Sciences de base” est réussi lorsquels les 17 crédits suivants sont obtenus :

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Branches d'examen (session de printemps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Analyse III (écrit)</td>
</tr>
<tr>
<td>4</td>
<td>Physique générale III (écrit)</td>
</tr>
<tr>
<td>3</td>
<td>Programmation (écrit)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Branches d'examen (session d'été ou d'automne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Probabilité et statistique I, II (écrit)</td>
</tr>
</tbody>
</table>

2. Le bloc 2 “Cours de base SIE” est réussi lorsquels les 17 crédits sont obtenus :

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Branches d'examen (session de printemps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Biologie I (écrit)</td>
</tr>
<tr>
<td>3</td>
<td>Mécanique des fluides I (écrit)</td>
</tr>
<tr>
<td>2</td>
<td>Météorologie (écrit)</td>
</tr>
<tr>
<td>2</td>
<td>Méthodes d’estimation (écrit)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Branches d'examen (session d'été)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Hydrologie générale (écrit)</td>
</tr>
<tr>
<td>2</td>
<td>Pédagogie I (écrit)</td>
</tr>
<tr>
<td>2</td>
<td>Physique du sol I (écrit)</td>
</tr>
</tbody>
</table>
8. Introduction au droit (écrit) 2

3 Le bloc 3 “Cours spécifique SIE” est réussi lorsque les 17 crédits suivants sont obtenus. Ce bloc est composé de 5 branches obligatoires pour 11 crédits et de 2 branches à option à choisir sur 3 donnant droit à 6 crédits.

- Branches d’examen (session de printemps)
 1. Topométrie (écrit) 2
- Branches d’examen obligatoires (session d’été)
 2. Microbiologie et biol. des sols et des eaux (oral) 2
 3. Chimie environnementale I (oral) 2
 4. Génie des procédés I (écrit) 4
- Branches d’examen à option (session d’été)
 5. Géotechnique et fondations (écrit) 3
 6. Fonctionnement des écosystèmes (écrit) 3
 7. Photointérprétation (oral) 3
- Branches de semestre
 8. Informatique de l’ingénieur (été) 1

4 Le bloc 4 “Projeter ensemble et SHS” est réussi lorsque les 9 crédits suivants sont obtenus :

- Branches de semestre
 1. Cours ENAC III, IV (hiver + été) 4
 2. Semaine ENAC I (été) 2
 3. SHS: travaux par projet (hiver + été) 3

Art. 6 – Examen de 3ème année (2005-2006)

Chapitre 3 : Admission au cycle master (pour les étudiants effectuant leur 3ème année d’études en 2004-2005)

Article 7 – Organisation

1 L’étudiant doit choisir 8 à 10 branches. Un des cours à option peut être remplacé par un ou plusieurs cours non SHS de 3ème ou 4ème année d’une autre section de l’EPFL. Ce ou ces cours doivent totaliser un minimum de 3 crédits. Le choix de l’étudiant doit être approuvé préalablement par l’adjoint de section ou le conseiller d’études.

2 Dans le bloc 3, composé des options, le nombre de crédits pouvant être acquis peut dépasser le minimum requis. La compensation avec les autres blocs n’est pas possible et la moyenne du bloc est calculée sur l’ensemble des branches examinées.

Article 8 – Sessions d’examen

1 Les branches semestrielles sont examinées à la session qui suit immédiatement la fin des cours, soit à la session de printemps ou à la session d’été.

2 Les branches annuelles sont examinées à la session d’été.

Art. 9 - Examen d’admission au cycle master

1 Le bloc 1 est réussi lorsque les 11 crédits suivants sont obtenus :

- Branches de semestre
 1. Agronomie (été) 2
 2. Economie rurale et d’entreprise I,II (hiver+été) 2
 3. Méthodologie d’études d’impacts (été) 2
 4. SHS : Formation spécialisée, niveau bachelor (hiver+été) 5

2 Le bloc 2 est réussi lorsque les 10 crédits suivants sont obtenus :

- Branches d’examen
 1. Télédétection (printemps) (écrit) 2
 2. Analyse spatiale (printemps) (écrit) 2

- Branches de semestre
 3. Géotechnique et fondations (été) 2
 4. Structures (été) 2
 5. Législation environnementale (été) 2

3 Le bloc 3, composé des cours à option, est réussi lorsque 40 crédits au moins sont obtenus.

- Branches d’examen de 3e année (session de printemps)
 1. Biotechnologie environnementale II (écrit) 5
 2. Hydraulique et réseaux (oral) 5
 3. Physique du sol II (oral) 5
 4. Système d’information à référence spatiale II (oral) 5
 5. Positionnement et cartographie (oral) 5
 6. Astronomie et localisation par satellites (oral) 5
 7. Cours 2e cycle d’une autre section 5

- Branches d’examen de 3e année (session d’été)
 8. Chimie environnementale I,II (oral) 5
 9. Ecotoxicologie et toxicologie humaine I et II (écrit) 5
 10. Hydrologie appliquée (écrit) 5
 11. Photogrammétrie (oral) 5
 12. Pédologie II (oral) 5
 13. Photochimie atmosphérique (oral) 5
 14. Chimie biologique I et Biologie I (écrit) 5
 15. Cours 2e cycle d’une autre section 5

Chapitre 4 : Master (pour les étudiants effectuant leur 4ème année en 2004-2005)

Art. 10 - Organisation

1 Les enseignements de la formation master sont répartis en :
- 1 bloc des branches obligatoires donnant lieu à 28 crédits,
- 1 groupe des branches à option donnant lieu à 32 crédits,
- 1 groupe des branches d'un mineur donnant lieu à 30 crédits.

2 Les étudiants doivent prendre au minimum 60 crédits de la liste officielle des cours proposés par la section SIE.

3 Un stage et un seul, non obligatoire, proposé par l'étudiant, mais devant être accepté préalablement par la section donne lieu à 2 crédits.

Art. 11 – Branches à option

1 Le choix des branches à option au cycle master est laissé à la libre appréciation de chaque étudiant.

2 Les branches à option offertes par la section des Sciences et Ingénierie de l'Environnement sont toutes les branches comprises dans les mineurs offerts par la section et ceux sur la liste des cours optionnels.

3 Il est recommandé aux étudiants d'axer leur choix dans un nombre limité de domaines. La section aide chaque étudiant à faire ce choix en le conseillant.

4 L'étudiant doit faire valser préalablement le choix éventuel d'options externes à la section (branches prises dans d'autres sections EPFL ou dans d'autres institutions universitaires).

5 Chaque étudiant soumet à la section au moins un mois avant le dernier jour de chaque semestre, la liste des options qu'il va suivre au semestre suivant. Ce choix peut être modifié dans les deux premières semaines du semestre en accord avec le directeur de la section.

Art. 12 - Mineurs

1 Afin d'approfondir un aspect particulier de sa formation ou de développer des interfaces avec d'autres sections de l'EPFL, l'étudiant suit la formation d'un mineur.

2 Les mineurs sont constitués de certaines branches à option choisies par l'étudiant au sein d'une liste établie par la section.

3 Un mineur est réussi quand 30 crédits au minimum sont obtenus parmi les branches à option proposées.

4 Trois types de mineurs sont admis pour la section Sciences et Ingénierie de l'Environnement :
 1. Mineurs proposés par la section
 2. Mineurs d'une autre section de l'ENAC
 3. Mineurs d'une autre section de l'EPFL

5 La liste des mineurs proposés par la section est la suivante :
 1. Gestion de la pollution et écologie industrielle
 2. Biotechnologies environnementales
 3. Ingénierie des eaux et du sol et des écosystèmes
 4. Géomatique
 5. Développement territorial (dès 2005-2006)

6 Les branches des mineurs offertes par la section sont mentionnées dans le plan d'études.

7 Des branches non présentes dans la liste officielle des mineurs de la section peuvent être proposées par l'étudiant à la section. La section doit valser ce choix.

8 Dans le cas du choix d'un mineur d'une autre section, le choix de l'étudiant est à valser par la section SIE et par l'autre section concernée.

9 L'étudiant annonce son choix à la section au plus tard un mois avant le début du 7ème semestre. Il confirme ce choix au plus tard deux semaines après le début du 7ème semestre.

Art. 13 – Examen du cycle master

1 Le bloc des branches obligatoires est réussi lorsque les 28 crédits suivants sont obtenus :

Branches de semestre
1. Projet / UE ENAC/SIE (semestres 7,8,9) 4
2. Projet STS (hiver + été) 4

Branches d'examen (session de printemps)
3. Modélisation environnementale 3
4. Statistique environnementale 3
5. SIG pour l'environnement 3
6. Écologie des écosystèmes et du paysage 3

Branches d'examen (session d'été)
7. Théorie du territoire I, II 3
8. Droits, contrats et responsabilité professionnelle 2
9. Eco-conception et écologie des systèmes industriels 3

2. Les 32 crédits associés aux branches à option s'acquièrent de façon indépendante, par réussite individuelle de chaque branche.

3. Les 30 crédits associés au mineur choisi s'acquièrent de façon indépendante, par réussite individuelle de chaque branche.

Chapitre 5 : Dispositions finales

Art. 14 - Abrogation du droit en vigueur

Le règlement d'application du contrôle des études de la section des Sciences et Ingénierie de l'Environnement de l'EPFL du 26 mai 2003 est abrogé.

Art. 15 - Entrée en vigueur

Le présent règlement est applicable aux examens correspondant au plan d'études 2004/2005.

17 mai 2004 Au nom de la direction de l'EPFL

Le président, P. Aebischer
Le vice-président pour la formation, M. Jufer
<table>
<thead>
<tr>
<th>Enseignant</th>
<th>Sujets</th>
<th>Page(s)</th>
</tr>
</thead>
</table>
| ANCEY Christophe | Mécanique des fluides I
| | Risques hydrologiques et aménagements | 82, 204 |
| BALDERESCHI Alfonso | Physique générale I, II | 53, 66 |
| BECKER VAN SLOOTEN Kristin | Analyse et modélisation du risque I, II
| | Ecotoxicologie | 124 |
| | Impact des polluants sur les écosystèmes et au travail | 165 |
| BEUSCH Christophe | UE J : Temps, territoire et paysage | 155 |
| BEY Isabelle | Changements climatiques et impacts | 170 |
| | Modélisation environnementale | 136 |
| BOILLAT Jean-Louis | Bio-Ingénierie des cours d'eau et des systèmes naturels I, II
| | Hydraulique et réseaux | 145, 111|
| | Hydrologie et systèmes hydrauliques des milieux urbanisés II | 174 |
| BONJOUR Jean-Daniel | Informatique de l'ingénieur | 97 |
| | Instruments informatiques | 52 |
| BUFFONI Boris | Analyse I | 49 |
| BURDET Olivier | Structures I, II | 59, 73 |
| BUTTLER Alexandre | Conservation des sols et gestion des systèmes naturels I, II
| | Ecologie des écosystèmes et du paysage | 146, 171|
| | Ecologie générale et biodiversité | 135 |
| | Ecologie numérique | 58 |
| | Fonctionnement des écosystèmes | 203 |
| CALOZ Régis | Analyse d'image du territoire I, II | 150, 179|
| | Analyse spatiale | 105 |
| | Télédétection | 107 |
| CAMACHO Eduardo | UE C : Aménagement urbain, mobilité et environnement | 154, 186|
| CHARLES Jean-Paul | Agronomie | 129 |
| CIBILS Michel | Analyse II | 63 |
| COGATO LANZA Elena | Théorie urbaine I, II | 151, 181|
| | UE J : Temps, territoire et paysage | 155 |
| COMNINELLIS Christos | Chimie générale | 55 |
| de ALENCASTRO L. Felippe | Chimie environnementale II | 123 |
| | Dissémin : et exposition des substances chimiques dans l’environnement | 141 |
| de HEER Jules | Méthodologies d’étude d’impact sur l’environnement | 131 |
| DERONT Marc | Génie et modélisation des bioprocedes de l’environnement I, II | 142, 197|
| DIETLER Giovanni | Physique générale II, III | 66, 80 |
| DUMONT André-Gilles | Transport et télématicque | 185 |
| DUPRAZ Hubert | Astronomie et localisation par satellites | 112 |
| | Géodésie I, II | 148, 176|
| | Topographie | 71 |
ERKMAN Suren | Eco-conception et écologie des systèmes industriels 160
| Projet écologie industrielle ou stage 195

FAVRAT Daniel | Filières de conversion 163

FRELECHOUX François | Fonctionnement des écosystèmes 99

FREY Pierre | ENAC : Questions d’histoires 182

GENCER Mustafa | Géotechnique et fondations 98, 119

GILLET François | Conservation des sols et gestion des systèmes naturels I, II 146, 171
| Ecologie des écosystèmes et du paysage 135
| Ecologie numérique 203
| Fonctionnement des écosystèmes 99

GILLIERON Pierre-Yves | Navigation dans les transports 175
| Positionnement et cartographie 114

GOLAY François | Géoinformation 72
| Infrastructures de données spatiales 206
| Management de projets SIG 178
| SIG pour l’environnement 137
| SIRS II 115
| Théorie du territoire I, II 139, 161

GOTTHARDT Rolf | Physik I 54

GUENAT Claire | Conservation des sols et gestion des systèmes naturels I, II 146, 171

GUILLEMIN Michel | Impact des polluants sur les écosystèmes et au travail 165

HARBICH Wolfgang | Physik II 67

HINGRAY Benoit | Hydrologie et systèmes hydrauliques des milieux urbanisés I 147

HOLLIGER Christof | Traitement des eaux usées urbaines I, II 144, 199
| Biologie II 81
| Chimie biologique I 69, 122
| Remédiation des sols et des nappes I, II 143, 198

HUGUENIN Laurent | Géodésie I, II 148, 177

HULAAS Jarle | Programmation 79

IORGULESCU Ion | Bio-ingénierie des cours d’eau et des systèmes naturels II 169
| Ecologie des écosystèmes et du paysage 135

JOLLIEJT Olivier | Analyse et modélisation du risque I, II 164, 193
| Eco-conception et écologie des systèmes industriels 160
| Projet écologie industrielle ou stage 195
| Systèmes de management environnementaux 196

KAUFMANN Vincent | Sociologie urbaine 152
| Territoire et société 187
| Ville et mobilité 184

KNOEPFEL Peter | Gestion régionale durable et indicateurs 194

KOELBL Otto | Analyse d’image du territoire I, II 150, 179
| Photogrammétrie 128
| Photo-Interprétation 100
<table>
<thead>
<tr>
<th>Nom</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOELBL Otto</td>
<td>Positionnement et cartographie</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Réalité virtuelle</td>
<td>180</td>
</tr>
<tr>
<td>KYTZIA Suzan</td>
<td>Analyse des flux de matières</td>
<td>192</td>
</tr>
<tr>
<td>LACHAT Bernard</td>
<td>Bio-ingénierise des cours d'eau et des systèmes naturels II</td>
<td>169</td>
</tr>
<tr>
<td>LEMMIN Urs</td>
<td>Gestion intégrée des eaux I, II</td>
<td>173</td>
</tr>
<tr>
<td>LETERRIER Yves</td>
<td>Recyclage des matériaux</td>
<td>201</td>
</tr>
<tr>
<td>LEVY Jacques</td>
<td>Théorie du territoire I, II</td>
<td>139</td>
</tr>
<tr>
<td>MACQUAT Jacques</td>
<td>Théorie du territoire I, II</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>UE C : Aménagement urbain, mobilité et environnement</td>
<td>154</td>
</tr>
<tr>
<td>MARGNI Manuele</td>
<td>Dissémin. et exposition des substances chimiques dans l'environnement</td>
<td>186</td>
</tr>
<tr>
<td>MATTENBERGER Philippe</td>
<td>Transport et télématique</td>
<td>141</td>
</tr>
<tr>
<td>MERMINOD Bertrand</td>
<td>Astronomie et localisation par satellites</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Méthodes d'estimation</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Techniques de navigation</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Topométrie</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Gestion du régime hydrique des sols I, II</td>
<td>85</td>
</tr>
<tr>
<td>MERMOUD André</td>
<td>Physique du sol I, II</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Gestion intégrée des eaux I, II</td>
<td>200</td>
</tr>
<tr>
<td>METZENER Philippe</td>
<td>Analyse III</td>
<td>92</td>
</tr>
<tr>
<td>MIEHBRADT Manfred</td>
<td>Structures</td>
<td>113</td>
</tr>
<tr>
<td>MORGENTHALER Phaik</td>
<td>Ecotoxicologie et toxicologie humaine I</td>
<td>77</td>
</tr>
<tr>
<td>MOUNTFORD Thomas</td>
<td>Probabilité et statistique I, II</td>
<td>106</td>
</tr>
<tr>
<td>MUSY André</td>
<td>Hydrologie appliquée</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Gestion intégrée des eaux II</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Hydrologie générale</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Risques hydrologiques et aménagements</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Structures I, II</td>
<td>125</td>
</tr>
<tr>
<td>MUTTONI Aurélio</td>
<td>Statistiques environnementales</td>
<td>90</td>
</tr>
<tr>
<td>PARLANGE Marc</td>
<td>Statistiques environnementales</td>
<td>205</td>
</tr>
<tr>
<td>PARRIAUX Aurèle</td>
<td>Géologie I, II</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Gestion intégrée des eaux II</td>
<td>73</td>
</tr>
<tr>
<td>PEDRAZZINI – SCHULER – PFLIEGER NOSCHI</td>
<td>Dissémin. et exposition des substances chimiques dans l'environnement</td>
<td>138</td>
</tr>
<tr>
<td>PENNINGTON D.W.</td>
<td>Biotechnologie Environnementale II</td>
<td>201</td>
</tr>
<tr>
<td>PERINGER Paul</td>
<td>Génie des procédés I</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Génie et modélisation des bioproduits de l'environnement I, II</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Traitement biologique des déchets organiques et effluents gazeux</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Traitement des eaux usées urbaines I, II</td>
<td>142</td>
</tr>
<tr>
<td>POINTET Abram</td>
<td>Hydro-géo-informatique</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Technologie des SIG I, II</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Traitement des eaux usées industrielles</td>
<td>199</td>
</tr>
<tr>
<td>PRELAZ-DOUX Roland</td>
<td>Gestion foncière et droit</td>
<td>144</td>
</tr>
<tr>
<td>PRODON Alain</td>
<td>Algèbre linéaire</td>
<td>183</td>
</tr>
<tr>
<td>PULGARIN César</td>
<td>Traitement des eaux usées industrielles</td>
<td>51</td>
</tr>
<tr>
<td>REBETEZ Martine</td>
<td>Fonctionnement des écosystèmes</td>
<td>168</td>
</tr>
<tr>
<td>Nom</td>
<td>Programme</td>
<td>Pages</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>RIBI Jean-Marc</td>
<td>Production et contrôle de l'eau potable</td>
<td>166</td>
</tr>
<tr>
<td>RIEDO Marc</td>
<td>Technologie des SIG I, II</td>
<td>149, 177</td>
</tr>
<tr>
<td>ROMY Isabelle</td>
<td>Contrats et responsabilité professionnelle</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Gestion foncière et droit</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Introduction au droit</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Législation environnementale et construction</td>
<td>120</td>
</tr>
<tr>
<td>ROQUE Olivier</td>
<td>Economie rurale et d'entreprise I, II</td>
<td>116, 130</td>
</tr>
<tr>
<td>ROSSELLI Walter</td>
<td>Fonctionnement des écosystèmes</td>
<td>99</td>
</tr>
<tr>
<td>RUMLEY Pierre-Alain</td>
<td>Aménagement du territoire</td>
<td>153</td>
</tr>
<tr>
<td>RUZICKA-ROSSIER Monique</td>
<td>Remédiation des sols et des nappes I, II</td>
<td>153</td>
</tr>
<tr>
<td>SAEUBERLI Eric</td>
<td>Aménagement du territoire</td>
<td></td>
</tr>
<tr>
<td>SCHULER Martin</td>
<td>Théorie du territoire I, II</td>
<td>139, 161</td>
</tr>
<tr>
<td></td>
<td>UE C : Aménagement urbain, mobilité et environnement</td>
<td>154, 186</td>
</tr>
<tr>
<td>SCHWITZGUEBEL Jean-Paul</td>
<td>Remédiation des sols et des nappes I, II</td>
<td>143, 198</td>
</tr>
<tr>
<td>SEIGNEZ Chantal</td>
<td>Biologie I</td>
<td>68, 121</td>
</tr>
<tr>
<td>SEMMLER Klaus-Dieter</td>
<td>Analysis I, II</td>
<td>50, 64</td>
</tr>
<tr>
<td></td>
<td>Géométrie</td>
<td>65</td>
</tr>
<tr>
<td>SKALOUD Jan</td>
<td>Techniques de navigation</td>
<td>205</td>
</tr>
<tr>
<td>SLAVEYKOVA Vera</td>
<td>Chimie environnementale I</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Gestion intégrée des eaux I</td>
<td>173</td>
</tr>
<tr>
<td>SOUTTER Marc</td>
<td>Hydro-géo-informatique</td>
<td>202</td>
</tr>
<tr>
<td>STEUDLER Daniel</td>
<td>Infrastructures de données spatiales</td>
<td></td>
</tr>
<tr>
<td>STUCKI Erwin</td>
<td>Economie rurale et d'entreprise I, II</td>
<td>116, 130</td>
</tr>
<tr>
<td>TARRADELLAS Joseph</td>
<td>Chimie environnementale I</td>
<td>95, 109</td>
</tr>
<tr>
<td></td>
<td>Gestion intégrée des eaux I</td>
<td>173</td>
</tr>
<tr>
<td>VACAT</td>
<td>Microbiologie et biologie des sols et des eaux</td>
<td>94</td>
</tr>
<tr>
<td>VACAT</td>
<td>Pédologie I, II</td>
<td>91, 126</td>
</tr>
<tr>
<td>VACAT</td>
<td>Webmapping</td>
<td>207</td>
</tr>
<tr>
<td>Van den BERGH Hubert</td>
<td>Traitements thermiques des déchets industriels I, II</td>
<td>140, 191</td>
</tr>
<tr>
<td></td>
<td>Atmosphère et climat</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Changements climatiques et impacts</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Météorologie</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Photochimie atmosphérique</td>
<td>127</td>
</tr>
<tr>
<td>WAGNER Hélène</td>
<td>Ecologie des écosystèmes et du paysage</td>
<td>135</td>
</tr>
</tbody>
</table>
1er semestre
Titre :
ANALYSE I

Enseignant :
Boris Buffoni, chargé de cours, SB IACS

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 84</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 6</td>
</tr>
<tr>
<td>SIE</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>Cours 4</td>
</tr>
</tbody>
</table>

OBJECTIFS

Etude des méthodes principales du calcul différentiel et intégral de fonctions d’une variable en vue des applications aux problèmes physiques et techniques.

CONTENU

- Nombres complexes.
- Fonctions réelles, limite, continuité.
- Dérivée, développement limité.
- Suites.
- Séries de Taylor.
- Primitives, intégrales définies

FORME DE L’ENSEIGNEMENT :
Ex cathedra et exercices en salle

BIBLIOGRAPHIE:

- Cours polycopié, C.A. Stuart, Analyse I et II.
- J. Douchet, Analyse I, Recueil d’exercices et aide-mémoire, PPUR

FORME DU CONTROLE:
Examen écrit

LIAISON AVEC D'AUTRES COURS:

- Préalable requis:
 - Nombres réels, fonctions trigonométriques et exponentielles.

- Préparation pour:
Titre : ANALYSIS I in deutscher Sprache / ANALYSE I en allemand

Enseignant : Dr Klaus-Dieter SEMMLER, chargé de cours MA

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC, SV, SIE*, INF.</td>
<td>1</td>
<td>X</td>
<td>☐</td>
<td>☐</td>
<td>Par semaine:</td>
</tr>
<tr>
<td>MA, PH, GC* ,</td>
<td>1</td>
<td>X</td>
<td>☐</td>
<td>☐</td>
<td>Cours 4</td>
</tr>
<tr>
<td>GM, EL,</td>
<td>1</td>
<td>X</td>
<td>☐</td>
<td>☐</td>
<td>Exercices 4(∗2)</td>
</tr>
<tr>
<td>MT, MX</td>
<td>1</td>
<td>X</td>
<td>☐</td>
<td>☐</td>
<td>Pratique</td>
</tr>
</tbody>
</table>

OBJECTIFS
Cours de base en allemand, orienté vers les applications et les besoins de l'ingénieur.

ZIELSETZUNG
Anwendungsorientierte Basisvorlesung in deutscher Sprache, ausgerichtet auf die Bedürfnisse des Ingenieurs.

INHALT
- Reelle Zahlen
- Folgen und Reihen
- Funktionen, Grenzwerte und Stetigkeit
- Komplexe Zahlen
- Differentialrechnung von Funktionen von IR nach IR
- Integration, Stammfunktionen
- Verallgemeinerte Integrale
- Differentialgleichungen erster und zweiter Ordnung

FORME DE L'ENSEIGNEMENT:
Vorlesung mit Übungen in Gruppen.
Das mathematische Vokabular wird zweisprachig erarbeitet (d/f).

BIBLIOGRAPHIE: Wird in der Vorlesung bekannt-gegeben (Skript)

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Analysis II / Analyse II

FORME DU CONTROLE:
Abzugebende uebungen
Exercices a rendre
Schriftliches Exam mit Analysis II
Examen écrit avec Analysis II
Titre : ALGEBRE LINEAIRE

Enseignant: Alain PRODON, chargé de cours MA

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>SIE</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Les étudiants auront appris à reconnaître, formuler et résoudre des problèmes d’algèbre linéaire à l’aide notamment des notions d’espace vectoriel et d’application linéaire. Ils sauront se servir des matrices et de leurs principales propriétés.

CONTENU

- Introduction au calcul matriciel
- Systèmes d’équations linéaires et algorithme de Gauss, pivotement
- Inversion, factorisation des matrices
- Espaces vectoriels, indépendance linéaire, bases, sous-espaces, interprétation géométrique
- Coordonnées et changements de base
- Espaces associés à une matrice, rang
- Applications linéaires, noyau, image, matrices associées
- Produits scalaires généralisés, bases orthonormées, orthogonalisation de Gram Schmidt
- Approximations par la méthode des moindres carrés
- Déterminant, calcul, interprétation géométrique, propriétés
- Valeurs propres et vecteurs propres
- Diagonalisation, diagonalisation orthogonale, équations aux différences
- Formes quadratiques, notions sur les quadriques

FORME DE L’ENSEIGNEMENT: Cours ex cathedra, exercices en classe et sur ordinateur (Matlab)

BIBLIOGRAPHIE:
- Notes de cours.
- Algèbre linéaire, par R. Cairoli, PPU, 1991

FORME DU CONTROLE:
- Examen écrit, tests

LIAISON AVEC D’AUTRES COURS:
- Préalable requis: Analyse I et II, Géométrie
- Préparation pour: Analyse numérique, Statistiques, Recherche opérationnelle
Titre : INSTRUMENTS INFORMATIQUES

Enseignant : Jean-Daniel BONJOUR, chargé de cours SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCES ET ING. DE L’ENVIRONNEMENT</td>
<td>1</td>
<td></td>
<td>X</td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique (2)</td>
</tr>
</tbody>
</table>

OBJECTIFS

- Familiarisation avec l'environnements informatique d'enseignement de la section (PCs, périphériques, Internet…)
- Approfondissement des connaissances de bases de l'étudiant sur les applications de base de l'ingénieur (tableur, grapheur, logiciels mathématiques…) + outils Internet (Email, Web, forums News, et autres outils collaboratifs…)

CONTENU

Architecture d’un système informatique et notions de base (rappels)
- composants d’un ordinateur, périphériques, codage de l’information, système d’exploitation …

Environnement de travail SIE (actuellement basé Windows)
- environnement informatique des salles d’enseignement SIE : domaine, profiles-utilisateur, partitions, permissions d'accès, quota-disque, quota d'impression, personnalisation de son environnement de travail…
- panorama des logiciels proposés en SIE
- utilitaires spécifiques : antivirus, quotas (disque et impression), TreeSize, WinZip…
- usage de supports amovibles (disquette Zip, CD/DVD, clés USB…), impression (noir-blanc, couleur)
- le logiciel libre, ce que vous pouvez installer sur machines privées
- mesures de sécurité informatique de base : gestion des mots de passe, sauvegardes, patches, virus et spywares, etc…

Téléinformatique et Internet
- notions de base : réseaux locaux/étendus, protocoles, modèles OSI et TCP/IP, adressage, nommage, routage
- Internet : historique, organisation, étendue, éthique (netiquette), modes d'accès (modem, ISDN, ADSL, câble télé-réseau, réseau électrique, Wi-Fi…), configuration réseau
- services Internet de base : Email, transfert de fichier (ftp, scp…), session interactive (telnet/ssh, X-Window), Web, forums de discussion (News), outils de recherche (Web, News…)
- services réseau EPFL : bornes Oscar et portail/authentification Gaspar, portails spécifiques, page Web personnelle, autres outils collaboratifs (listes Email, forums SIE, calendrier, partage de fichiers…)
- accès aux services SIE et EPFL depuis l'extérieur de l'École (WebMail, fichiers…)
- informations relatives au projet Poseïdon (laptops à l’EPFL) : usage des "prises jaunes", Wi-Fi…

Elaboration de documents et présentations
- rappels des notions de base du traitement de documents : styles, insertion d'illustrations, pagination, en-têtes et pieds de page, sections, multi-colonne, titres, tables des matières, notes de bas de page, index, publi-postage
- présentation assistée par ordinateur (applications OpenOffice.org Impress et MS PowerPoint)

Tableur/graphicien et logiciel de mathématiques
- rappel des principes de base d’un tableur : classeur feuilles, styles, formatage cellules et feuille, formules, fonctions
- gestion de données : séries, matrices, gestion du temps, tableaux croisés dynamiques…
- visualisation des données (graphiques 2D, 3D, combinés…), programmation (macros, boutons…)
- introduction à Octave/Matlab : variables, workspace, environnement, opérateurs et fonctions, séries, vecteurs, matrices, M-files (scripts et fonctions), graphiques

FORME DE L’ENSEIGNEMENT : Exercices pratiques sur ordinateur

BIBLIOGRAPHIE : Support de cours et d'exercices (polyçopiés)

LIAISON AVEC D'AUTRES COURS :
- Préalable requis : aucun
- Préparation pour : Informatique de l’ingénieur, Programmation

NOMBRE DE CREDITS :
- aucun

SESSION D’EXAMEN :
- Pas d'examen (branche facultative)

FORME DU CONTROLE :
- Pas de contrôle (branche facultative)
Titre :

PHYSIQUE GENERALE I

Enseignant :

Prof. Alfonso Baldereschi, PH

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>GÉNIE CIVL</td>
<td>1</td>
<td>☑</td>
<td></td>
<td></td>
<td>Par semaine: 4</td>
</tr>
<tr>
<td>SCIENCES ET INGEN. DE L'ENVIRONNEMENT</td>
<td>1</td>
<td>☑</td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître les phénomènes physiques fondamentaux et comprendre les lois qui les décrivent. Apprendre à utiliser l'outil mathématique pour décrire les systèmes physiques ainsi que leur évolution. Connaître les applications en science et technique.

CONTENU

- **Introduction**

 Eléments de calcul vectoriel. Coordonnées cartesiennes, cylindriques et sphériques.

- **Cinématique du point matériel** :

 Position et mouvement d'un point matériel. Trajectoire, vitesse, accélération.

- **Dynamique du point matériel** :

- **Travail et énergie** :

- **Mouvement relatif** :

FORME DE L'ENSEIGNEMENT:

Ex cathedra et exercices dirigés en classe

BIBLIOGRAPHIE:

FORME DU CONTROLE:

Examen écrit

Contrôle continu avec système de bonus : exercices rendus et tests en cours de semestre.
ZIELSETZUNG

- Kennenlernen und Anwenden der allgemeinen Sätze der Kinematik und der Dynamik einzelner Massenpunkte.
- Analysieren der Bewegungen von Materie-Systemen und Bestimmen der für ihre Bewegung verantwortlichen Kräfte.

INHALT

- **Kinematik des einzelnen Massenpunktes**
 - Begriffe: Raum, Zeit
 - Bezugssysteme, Koordinatensysteme
 - Geschwindigkeit, Beschleunigung

- **Dynamik des einzelnen Massenpunktes**
 - Begriffe: Masse, Kraft
 - Newtonsche Gesetze
 - Arbeit, Leistung, kinetische Energie
 - Erhaltungssätze

- **Kinematik von nicht-verformbaren Festkörpern**
 - Eulersche Winkel
 - Rotationsvektor

- **Relative Bezugssysteme**
 - Zerlegung von Geschwindigkeiten und Beschleunigungen

FORME DE L’ENSEIGNEMENT : Ex cathedra und Uebungen

BIBLIOGRAPHIE: Empfohlene Bücher, korrigierte Uebungen

LIAISON AVEC D’AUTRES COURS

Préalable requis: Gute Arbeitskenntnisse in Mathematik und Physik

Préparation pour: Physik II

FORME DU CONTROLE

Uebungen. Klausuren.
Titre : CHIMIE GENERALE (pour Géosciences)

Enseignant : Prof. Christos Comminellis, CH

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENIE CIVIL</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIENCES ET INGEN. DE L'ENVIRONNEMENT</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

- Acquérir ou compléter les connaissances de base en chimie générale et préparer l’accès aux enseignements ultérieurs de la section
- Se familiariser avec le langage et la symbolique utilisés en chimie afin de servir de base aux relations interdisciplinaires
- Servir d’introduction aux cours de sciences du vivant

CONTENU

- **Série périodique des éléments:** Relations entre position des éléments dans le tableau périodique et leurs propriétés physiques et chimiques, prédiction des réactivités.

- **Liaisons, réaction chimique et stochiométrie:** Bref rappel des différents types de liaison, influence sur les propriétés physiques et chimiques des composés, réactions chimiques et équilibres (y compris acide-base, tampon, solubilité), réactif limitant et rendement.

- **Thermodynamique:** Transformation de l’énergie chimique et prédiction, énergie interne, enthalpie, loi de Hess, énergie libre, thermodynamique des équilibres, loi de Van’t Hoff, pile électrique et corrosion.

- **Cinétique:** Vitesse de réaction, ordre de réaction, mécanismes, théorie du complexe activé, loi d’Arrhénius et catalyse

- **Chimie organique:** Le carbone, hydrocarbures, groupes fonctionnels, composés industriels, molécules de la vie (Glucides. Lipides, Protides et acides nucléiques).

FORME DE L’ENSEIGNEMENT: Ex cathedra avec démonstrations pratiques et exercices en salle

FORME DU CONTROLE: Examen écrit

BIBLIOGRAPHIE: Livre PPR + polycopié

LIAISON AVEC D'AUTRES COURS:
- Préalable requis: Maturité fédérale
- Préparation pour: Cours nécessitant des connaissances de base de chimie
Titre : GEOLOGIE I

Enseignant : Prof. Aurèle Parriaux, GC

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCES ET INGEN. DE L'ENVIRONNEMENT</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Les ingénieurs civils et en environnement exercent leurs activités en constante interaction avec l'environnement Terre. Le cours de géologie donne aux étudiants une culture universitaire en géosciences et les bases nécessaires à une ingénierie bien intégrée dans le contexte de notre planète. Le cours vise notamment :
- à faire connaître les méthodes géologiques et les processus géodynamiques qui conduisent à la genèse, la déformation et l'altération des terrains meubles et des roches,
- à étudier la nature des principaux substrats géologiques ainsi que leurs propriétés,
- à faire comprendre comment les conditions géologiques influencent les activités de l'ingénieur, comment elles peuvent les faciliter, comment elles peuvent les compliquer,
- à sensibiliser les étudiants aux évolution géodynamiques externes et à leurs effets sur l'environnement, la géomorphologie, le paysage et le territoire.

CONTENU

Introduction : Comment est née la géologie et en quoi elle sert à l'ingénieur.

Géologie planétaire : place de la Terre dans l'univers, apports de la géologie planétaire à la compréhension de la terre et des processus qui s'y déroulent.

Histoire de la terre : évolution de la terre et de la vie, méthodes de datation.

Géophysique du globe : sismologie (étude des tremblements de terre), gravimétrie, magnétisme, géothermie (utilisation de l'énergie géothermique).

Minéraux constitutifs des roches : structures cristallines, grandes classes géochimiques, détermination des minéraux les plus courants.

Magmatisme : dérive des plaques, magmatismes de ride, intraplaque et orogénique, roches correspondantes et leurs propriétés (roches plutoniques et volcaniques), risques liés aux éruptions volcaniques.

Suite: voir cours de Géologie II

FORME DE L'ENSEIGNEMENT : Enseignement participatif

BIBLIOGRAPHIE : Traité d'enseignement

LIAISON AVEC D'AUTRES COURS : Hydrologie, Pédologie, Aménagements, Environnement

Préalable requis :
Préparation pour : Géologie II

FORME DU CONTROLE :
Examen combiné avec Géologie II
Contrôle continu facultatif et examen écrit
Titre : ATMOSPHÈRE ET CLIMAT

Enseignant : Prof. Hubert van den Bergh, SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales : 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCES ET ING. DE L'ENVIRONNEMENT</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine : 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours : 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices : 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique : 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

CONTENU

Introduction aux problèmes de la pollution atmosphérique

Quelques problèmes liés à l'influence anthropogénique sur l'atmosphère :

FORME DE L'ENSEIGNEMENT : ex cathedra

BIBLIOGRAPHIE : Polycopiés et notes de cours

LIAISON AVEC D'AUTRES COURS :

Préalable requis :

Préparation pour :

FORME DU CONTROLE :

Branche de semestre
Titre : ECOLOGIE GENERALE ET BIODIVERSITE

Enseignant : Prof. Alexandre Buttler, SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCES ET INGEN. DE L'ENVIRONNEMENT</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Donner dès le début des études les notions de base en écologie pour une compréhension générale des structures, processus, phénomènes et enjeux, dans une perspective d’approche globale.
Le cours doit permettre aux étudiants de comprendre le rôle de l’écologie dans le cadre des sciences de l’ingénieur, des sciences de l’environnement et des sciences de la gestion durable du territoire et des ressources biologiques.

CONTENU

Partie I
Chapitre 1 : L’ordre dans le monde naturel

Partie II
Chapitre 2 : Environnement physique des organismes
Chapitre 3 : Eau et solutés
Chapitre 4 : Energie et chaleur
Chapitre 5 : Réponses aux variations environnementales
Chapitre 6 : Facteurs biologiques dans l’environnement
Chapitre 7 : Le climat à différentes échelles

Partie III
Chapitre 8 : Le concept d’écosystème
Chapitre 9 : Flux d’énergie
Chapitre 10 : Les cycles bio-géochimiques globaux
Chapitre 11 : Régénération des nutriments à l’intérieur des compartiments terrestres et aquatiques

Partie IV
Chapitre 12 : Structure des populations
Chapitre 13 : Croissance des populations
Chapitre 14 : Régulation des populations
Chapitre 15 : Fluctuations et cycles des populations

Partie V
Chapitre 16 : Le concept de communauté
Chapitre 17 : La structure des communautés
Chapitre 18 : Développement des communautés

FORME DE L’ENSEIGNEMENT: Ex cathedra

BIBLIOGRAPHIE:

FORME DU CONTROLE:
Branche de semestre,
Ecrit, 1 heure

LIAISON AVEC D'AUTRES COURS:
Préalable requis:
Préparation pour: Ecologie des écosystèmes et du paysage 7ème sem. SIE
<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHITECTURE</td>
<td>1</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENIE CIVIL</td>
<td>1</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIENCES ET ING. DE L'ENVIRONNEMENT</td>
<td>1</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Comprendre les principes de fonctionnement des divers types de structures du domaine de la construction

Connaître les principes fondamentaux de l’équilibre et du dimensionnement des structures

Appliquer les connaissances acquises pour comprendre, concevoir et dimensionner des structures réelles.

CONTENU

Forces
- Types de force
- Ligne d’action

Efforts et matériaux
- Traction et compression
- Comportement mécanique des matériaux
- Principes de dimensionnement

Equilibre
- Equilibre des forces dans le plan et dans l’espace

Câbles
- Câbles avec une charge
- Câbles avec plusieurs charges
- Stabilité de forme des câbles
- Réseaux de câbles et membranes

Arcs
- Forme idéale des arcs
- Stabilité et ligne d'action des forces
- Arcs isostatiques et hyperstatiques
- Voûtes
- Coupole
- Coques

FORME DE L’ENSEIGNEMENT:
Cours ex cathedra avec soutien du cours en ligne http://i-structures.epfl.ch, exercices en ligne utilisant le site.

BIBLIOGRAPHIE:
L’art des structures par A. Muttoni, PPUR 2004

LIAISON AVEC D'AUTRES COURS:
Préalable requis

Préparation pour: Structures II, autres cours de structure et de conception des structures

NOMBRE DE CREDITS:
6 pour I et II

SESSION D’EXAMEN

FORME DU CONTROLE:
Branche de semestre.
Test(s) en cours de semestre

Titre: COURS ENAC I

Enseignant: Enseignants de la Faculté ENAC

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHITECTURE</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td>GENIE CIVIL</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td>SCIENCES ET INGENIERIE DE L'ENVIRONMENT</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>Exercices:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique</td>
</tr>
</tbody>
</table>

OBJECTIFS

Le but est la création de bases pour le développement d’une « culture ENAC » : le développement de capacités et disponibilités de synergies des étudiants des trois sections (ingénieurs et architectes) en participant à un projet commun.

Le cours révèlera la complexité du territoire, la multiplicité des points de vue, la complémentarité ou la confrontation entre les diverses approches disciplinaires. Les étudiants vont comprendre le rôle joué par chaque discipline (architecture, génie civil, ingénierie de l’environnement) dans le processus de développement territorial.

CONTENU

Dans le premier semestre les étudiants seront confrontés avec les composantes naturelles (minéral, végétal) du territoire, traversant plusieurs échelles spatiales et temporelles. En même temps ils vont acquérir les moyens et développer la capacité de lire, de comprendre et de représenter le territoire.

FORMES DE L’ENSEIGNEMENT: cours ex cathedra, ex. pratiques

BIBLIOGRAPHIE: voir http://cours-enac.epfl.ch/

LIAISON AVEC D’AUTRES COURS:

Préalable requis:

Préparation pour: cours ENAC III et IV

FORME DU CONTROLE:

Branche de semestre, examen écrit
2e semestre
Titre: ANALYSE II

Enseignant: Michel Cibils, chargé de cours MA

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 84</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 6</td>
</tr>
<tr>
<td>SIE</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Cours: 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Etude des méthodes principales du calcul différentiel et intégral de fonctions de plusieurs variables en vue des applications aux problèmes physiques et techniques.

CONTENU
- Intégrales généralisées, séries, séries entières.
- Équations différentielles du premier ordre.
- Équations différentielles du deuxième ordre, linéaires aux coefficients constants.
- Fonctions de plusieurs variables: continuité, dérivées et dérivées partielles.
- Fonctions implicites.
- Extrema et extrema liés.
- Intégrales doubles et triples.

FORME DE L'ENSEIGNEMENT: Ex cathédra, avec exercices en salle.

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Algèbre vectoriel, calculs matriciels.

FORME DU CONTROLE:
Examen écrit
Titre: ANALYSIS II in deutscher sprache / ANALYSE II en allemand

Enseignant: Klaus-Dieter Semmler, chargé de cours MA

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC*, SV*, SIE*, INF*</td>
<td>2</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>Par semaine: 6</td>
</tr>
<tr>
<td>MA, PH, GC*</td>
<td>2</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>Cours: 4</td>
</tr>
<tr>
<td>GM*, EL*</td>
<td>2</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>Exercices: 4 (*2)</td>
</tr>
<tr>
<td>MT*, MX*</td>
<td>2</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Cours de base en allemand, orienté vers les applications et les besoins de l’ingénieur.

ZIELSETZUNG
Anwendungsorientierte Basisvorlesung in deutscher Sprache, ausgerichtet auf die Bedürfnisse des Ingenieurs

INHALT

- Differentialrechnung von Funktionen von IR^n nach IR^m
- Grenzwerte und Stetigkeit, Extrema
- Gradient, Richtungsableitung Kritische Punkte
- Differentialformen, Integrierende Faktoren, Kurvenintegrale
- Integration über Gebiete im IR^n
- Die Green-Stokes Formel

FORME DE L'ENSEIGNEMENT: Vorlesung mit Uebungen in kleinen Gruppen - Das mathematische Vokabular wird zweisprachig erarbeitet (d/f).
Cours, exercices en petits groupes. Le vocabulaire mathématique sera travaillé de façon bilingue (d/f).

BIBLIOGRAPHIE: Wird in der Vorlesung bekanntgegeben (Sript).
Sera communiquée au cours (polycopié).

LIAISON AVEC D'AUTRES COURS: Basisvorlesung
Cours de base.

Préalable requis: Analysis I

FORME DU CONTROLE: Abzugehende Uebungen
Exercices à rendre
Schriftliches Examen mit Analysis I
Examen écrit avec Analysis I
Titre: GEOMETRIE

Enseignant: Klaus-Dieter SEMMLER, chargé de cours MA

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>2</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIE</td>
<td>2</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Par semaine:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique</td>
</tr>
</tbody>
</table>

OBJECTIFS

Apprendre à appliquer les méthodes du calcul différentiel et de l'algèbre linéaire aux objets géométriques.

Travailler avec des paramétrisations locales.

Etudier les notions de base de la géométrie différentielle (plan tangent, courbure, etc.) et leurs applications dans les branches d'ingénieurs.

Renforcer la vision spatiale.

CONTENU

- Courbes Diverses représentations, longueur, courbure.
- Surfaces I Diverses représentations, lignes de coordonnées.
- Surfaces II Cartes, calcul des angles et des aires.
- Isométries Points fixes, axes de rotation, méthode des coordonnées homogènes.
- Projections Projection parallèle, projection centrale, représentation analytique, dessin axonométrique.

FORME DE L'ENSEIGNEMENT: Cours ex cathedra et exercices en classe.

FORME DU CONTRÔLE: Ex. écrit

BIBLIOGRAPHIE: Polycopié sur Web.

LIAISON AVEC D'AUTRES COURS: Algèbre linéaire, analyse.

Préalable requis: Algèbre linéaire, analyse 1.

Préparation pour:
Titre : PHYSIQUE GENERALE II

Enseignant: Prof. Alfonso Baldereschi et Giovanni Dietler, PH

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 84</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>2</td>
<td>☒</td>
<td></td>
<td></td>
<td>Par semaine: 6</td>
</tr>
<tr>
<td>SIE</td>
<td>2</td>
<td>☒</td>
<td></td>
<td></td>
<td>Cours 4</td>
</tr>
<tr>
<td>GC [seul. 2004-2005]</td>
<td>4</td>
<td>☒</td>
<td></td>
<td></td>
<td>Exercices 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître les phénomènes physiques fondamentaux et comprendre les lois qui les décrivent. Apprendre à utiliser l'outil mathématique pour décrire les systèmes physiques ainsi que leur évolution. Connaître les applications en science et technique.

CONTENU

- **Dynamique des systèmes**:

- **Thermodynamique**:

- **Phénomènes de transport**
 Conduction de la chaleur et diffusion de matière.

- **Electromagnétisme**
 Electrostatique, champ et potentiel électrique. Courants électriques stationnaires. Magnétostatique.

FORME DE L'ENSEIGNEMENT: Ex cathedra et exercices dirigés en classe

BIBLIOGRAPHIE:

Notes polycopiées

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Analyse I et progressivement Analyse II
Préparation pour: Physique III

FORME DU CONTROLE:
Examen écrit

Contrôle continu avec systèmes de bonus : exercices rendus et tests en cours de semestre.
ZIELSETZUNG

- Anwenden dieser Gesetze für die Bestimmung des Gleichgewichtes und der Bewegung von Systemen von Massenerpunkten und von Festkörpern.
- Kennenlernen der Gesetze der Thermodynamik und ihre Anwendung auf idealisierte Systeme.
- Betrachtungen von Motoren, Mehrphasensystemen und chemischen Reaktionen.

INHALT

Mechanik, 2. Teil

- Dynamik von Materie-Systemen
 Massenschwerpunkt, Impuls, Trägheitsmoment, Hauptachsen
- Statik, Stossmechanik
- Lagrange’sche Mechanik

Thermodynamik

- Kinetische Theorie der Gase
- Erster und zweiter Hauptsatz der Thermodynamik
- Formalismus der Thermodynamik
- Mehrphasensysteme und andere Anwendungen

FORME DE L’ENSEIGNEMENT
Ex cathedra und Uebungen

BIBLIOGRAPHIE
Empfohlene Bücher, korrigierte Uebungen

LIAISON AVEC D’AUTRES COURS
Préalable requis: Physik I
Préparation pour: Physique III, IV

FORME DU CONTRÔLE
Uebungen und Klausuren
Schriftliches Schlussexamen
Titre: BIOLOGIE I
Enseignant: Chantal Seignez, chargée de cours SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td>SIE</td>
<td>6</td>
<td></td>
<td>X</td>
<td></td>
<td>Cours 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître la définition du vivant, l’origine de la vie et les principaux groupes de micro-organismes vivants

Assimiler la structure des cellules et des organismes

Comprendre les principales voies métaboliques qui gouvernent le comportement et la reproduction des micro-organismes.

CONTENU

Introduction à la biologie
- Définition du vivant
- Interactions des organismes avec leur environnement
- Taxonomie classique

Structure et fonction cellulaire
- Microscopie
- Cellules procaryote et eucaryote

Métabolisme cellulaire
- Nutrition et types nutritionnels
- Respiration cellulaire
- Biosynthèse des intermédiaires
- Photosynthèse

Origine de la vie
- Evolution chimique, biologique et microbienne
- Taxonomie moléculaire

Principaux groupes de microorganismes
- Virus, bactéries, protozoaires, algues et mycètes

OBJECTIVES

To know the definition of life, the origin of life and the main groups of micro-organisms

To assimilate the cell and organism structure

To understand the major catabolic pathways which determine the micro-organisms behaviour and reproduction

CONTENTS

Introduction of biology
- Definition of life
- Interactions of organisms with their environment
- Classical taxonomy

Cell structure and function
- Microscopy
- Prokaryotic and eukaryotic cells

Cellular metabolism
- Nutrition and nutritional types
- Cellular respiration
- Biosynthesis of key monomers
- Photosynthesis

Origin of life
- Chemical, biological and microbiological evolution
- Molecular taxonomy

Major groups of microorganisms
- Virus, bacteria, protozoan, alga and fungi

FORME DE L’ENSEIGNEMENT: Cours ex cathedra

BIBLIOGRAPHIE: Notes de cours copiés et Brooks Biology of Microorganisms

LIAISON AVEC D’AUTRES COURS: Chimie biologique I

Préalable : Chimie générale

Préparation pour: Biologie II et Microbiologie et biologie des sols et des eaux

FORME DU CONTROLE: Examen écrit, combine avec Chimie biologique I
OBJECTIFS
- connaître les différentes composantes moléculaires des cellules : leurs compositions et leurs fonctions
- apprendre les principes de l'utilisation de l'information génétique et les mécanismes d'évolution
- apprendre les différents systèmes de régulation aux niveaux génétiques et biochimiques

CONTENU
Composantes moléculaires des cellules :
- polysaccharides, acides nucléiques (ADN, ARN), protéines (structure, fonctions, principales classes d'enzymes), lipides, lipoprotéines, membranes, cofacteurs et vitamines

Utilisation de l'information génétique et mécanismes d'évolution :
- transcription, traduction, réplication, évolution verticale et horizontale

Régulation aux niveaux génétiques et biochimiques
- régulation de l'activité enzymatique, régulation de la transcription : induction, répression, contrôle positif, contrôle globale, atténuation, transduction des signaux

OBJECTIVES
- knowing the different molecular components of biological cells: their composition and function
- understanding the principles of the use of genetic information and the different mechanisms of evolution
- understanding the basics of regulation mechanisms on enzyme and gene level

CONTENTS
Molecular cell components :
- polysaccharides, nucleic acids (DNA, RNA), proteins (structure, functions, major enzyme classes), lipids, lipoproteins, membranes, cofactors, and vitamins

Use of genetic information and mechanisms of evolution :
- transcription, translation, replication, vertical and horizontal evolution

Regulation on enzyme and gene level :
- regulation of enzymatic activity, regulation of transcription: induction, repression, positive control, attenuation, global control, transduction of signals

FORME DE L'ENSEIGNEMENT: Cours ex cathedra
BIBLIOGRAPHIE: Notes de cours polyéopies et Brock Biology of Microorganisms
LIAISON AVEC D'AUTRES COURS:
Préalable : Chimie biologique I et Biologie I
Préparation pour: Mineur en Biotechnologie environnementale

FORME DU CONTROLE: Examen écrit
Titre: GEOLOGIE II
Enseignant: Prof. Aurèle Parriaux, GC

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>2</td>
<td>X</td>
<td>□</td>
<td>□</td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Les ingénieurs civils et en environnement exercent leurs activités en constante interaction avec l'environnement Terre. Le cours de géologie donne aux étudiants une culture universitaire en géosciences et les bases nécessaires à une ingénierie bien intégrée dans le contexte de notre planète. Le cours vise notamment :
- à faire connaître les méthodes géologiques et les processus géodynamiques qui conduisent à la genèse, la déformation et l'altération des terrains meubles et des roches,
- à étudier la nature des principaux substrats géologiques ainsi que leurs propriétés,
- à faire comprendre comment les conditions géologiques influencent les activités de l'ingénieur, comment elles peuvent les faciliter, comment elles peuvent les compliquer,
- à sensibiliser les étudiants aux évolution géodynamiques externes et à leurs effets sur l'environnement, la géomorphologie, le paysage et le territoire.

CONTENU

Cycle de l'eau : formes de l'eau sur la Terre, bilan hydrique, l'atmosphère, les eaux de surface, les eaux souterraines, ressources en eau.

Milieu continental : processus d'érosion et de dépôt, géomorphologie, environnements versants (glissements de terrain et éboulements), lacustre, palustre, glaciaire et désertique.

Milieu marin : processus sédimentaires de marge continentale et de haute mer, sédiments et roches détritiques, biogènes et hydrochimiques. Interactions entre sciences de la Terre et sciences de la vie.

Diagenèse : processus de transformation des sédiments en roches (compaction, cimentation, modifications minéralogiques légères), géologie des combustibles fossiles.

Métamorphisme : recristallisation solide des roches, métamorphisme régional, de contact et dynamométamorphisme, roches correspondantes et leurs propriétés.

Tectonique : contraintes dans les roches, déformations cassantes (diaplaces, failles), déformations ductiles (plis, nappes tectoniques).

Altération des roches : phénomènes conduisant à l'altération (physiques, chimiques, minéralogiques), roches sensibles à l'altération, conséquences pour l'ingénieur, recommandations.

FORME DE L’ENSEIGNEMENT:
Enseignement participatif

BIBLIOGRAPHIE:
Traité d’enseignement

LIAISON AVEC D'AUTRES COURS:
Hydrologie, Pédologie, Aménagements, Environnement

Préalable requis:
Géologie I

Préparation pour:

FORME DU CONTROLE:

Examen combiné avec Géologie I
Contrôle continu facultatif et examen écrit
Titre : TOPOGRAPHIE :

Enseignant : Hubert DUPRAZ, chargé de cours SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td>GC</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Cours 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Cours : Donner un aperçu de la topographie et des techniques de mensuration, plus spécialement dans leurs applications aux domaines de la construction. Faire comprendre le rôle et l'importance des opérations et des documents topographiques et de leurs qualités pour le génie civil.

Exercices : Initier aux calculs topographiques simples et à leur analyse. Sensibiliser à la nécessité de contrôler les observations et d'estimer leur précision.

CONTENU

Définitions et bases géodésiques
Cartes et plans : échelles, contenu, cartes thématiques

Détermination planimétrique de points
Altimétrie : nivellement géométrique et trigonométrique

Mesure des angles - emploi du théodolite
Mesure des distances - emploi des distancemètres
Mesure de différences d’altitude – emploi du niveau
Travaux topographiques pour le Génie civil – Implantation et surveillance d’ouvrages
Introduction au positionnement par satellites : GPS
Introduction à la photogrammétrie
Histoire de la topographie : jalons et exemples

FORME DE L’ENSEIGNEMENT : ex cathédra et exercices en classe

BIBLIOGRAPHIE : Polycopiés et notes de cours

LIAISON AVEC D’AUTRES COURS : Géoinformation (Prof. Golay)

Préalable requis :
Préparation pour :

FORME DU CONTROLE :
Branche de semestre, examen écrit
Titre: GEOINFORMATION

Enseignant: Prof. François Golay, SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td>GC</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Cours 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

- Comprendre la nature et l’utilité des SIG pour le management environnemental et territorial.

- Comprendre les concepts essentiels de modélisation et de représentation numérique de l’espace géographique dans un système d’information.

- Comprendre les concepts de base pour l’acquisition, la gestion et la diffusion des données spatiales.

CONTENU

Le cours s’appuie sur le concept et les documents élaborés dans le cadre d’un projet du campus virtuel suisse qui a pour objet l’information géographique. Les heures de contact seront consacrées à la présentation de problèmes de représentation de l’information en cartographie, ainsi qu’en management environnemental et territorial.

Le rôle des systèmes d’information géographique sera illustré par des démonstrations, et, dans la mesure des possibilités, par un ou deux exercices de laboratoire géoinformatique.

Les notions abordées dans le cours sont les suivantes :

- Perception et modélisation du territoire
- Concepts spatiaux fondamentaux (échelle, relations spatiales, topologie)
- Acquisition des données (sources et méthodes : géodésie, GPS, télédétection)
- Propriétés de l’information spatiale et modèles numériques (vecteur et raster)
- Principes des bases de données
- Fonctionnalités des logiciels SIG
- Notions de cartographie (carte, légende, sémiologie graphique)
- Notions d’analyse spatiale à travers des exemples d’application (requêtes spatiales, analyse du relief, calcul d’itinéraire, aide à la décision, etc.)

FORME DE L’ENSEIGNEMENT: Cours disponible sur Internet, présentation et discussion de problèmes en classe. Démonstrations.

BIBLIOGRAPHIE: Cours disponible sur Internet. Compléments sous forme polycopiée.

liaison avec d’autres cours:

Préalable requis: Cours avancés de SIG, de bases de données.
Préparation pour: Management territorial et environnemental.

FORME DU CONTROLE: Branche de semestre. Note combinée avec Topographie.
STRUCTURES II

Enseignant: Prof. Aurélio Muttoni, GC, Olivier Burdet, chargé de cours GC

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 3</td>
</tr>
<tr>
<td>GC</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td>SIE</td>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
<td>Exercices: 1</td>
</tr>
</tbody>
</table>

OBJECTIFS

Comprendre les principes de fonctionnement des divers types de structures du domaine de la construction

Connaître les principes fondamentaux de l’équilibre et du dimensionnement des structures

Appliquer les connaissances acquises pour comprendre, concevoir et dimensionner des structures réelles.

CONTENU

Structures funiculaires à poussée compensée
- Arc avec sous-tirant
- Câble avec buton

Treillis
- Principe des treillis
- Treillis isostatiques et hyperstatiques
- Analyse intégrale des treillis
- Forme, typologie et efforts dans les treillis
- Analyse ciblée des treillis
- Tours et consoles en treillis
- Treillis spatiaux

Poutres et dalles
- Principe des poutres
- Forme, section et efforts dans les poutres
- Poutres isostatiques et hyperstatiques
- Grilles de poutres et dalles

Cadres
- Fonctionnement structural

Stabilité
- Phénomène de flambage
- Elancement
- Matériau, section, appuis, forme

FORME DE L’ENSEIGNEMENT: Cours ex cathedra avec soutien du cours en ligne http://i-structures.epfl.ch, exercices en ligne utilisant le site.

BIBLIOGRAPHIE: Livre *L’art des structures* par A. Muttoni, PPUR 2004

LIAISON AVEC D’AUTRES COURS:

Préalable: Cours de structures 1

Préparation pour: Cours de structures et de conception des structures

FORME DU CONTROLE:
- Test(s) en cours de semestre
COURS ENAC II

<table>
<thead>
<tr>
<th>Enseignant:</th>
<th>Divers Professeurs GC, SIE et AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>GC</td>
<td>2</td>
</tr>
<tr>
<td>SIE</td>
<td>2</td>
</tr>
<tr>
<td>AR</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Le but est la création de bases pour le développement d’une « culture ENAC »: le développement de capacités et disponibilités de synergies des étudiants des trois sections (ingénieurs et architectes) en participant à un projet commun.

Le cours révèlera la complexité du territoire, la multiplicité des points de vue, la complémentarité ou la confrontation entre les diverses approches disciplinaires. Les étudiants vont comprendre le rôle et la place joué par chaque professionnel (ingénieur ou architecte) dans le processus de développement territorial.

CONTENU

Le deuxième semestre se concentrera sur les modalités d’analyse et de compréhension de diverses formes du territoire construit. La mise en évidence des types caractéristiques du territoire lémanique sera suivie par la discussion des interactions entre les groupes sociaux et le territoire qu’ils occupent.

FORME DE L’ENSEIGNEMENT: Ex cathedra, exercices pratiques

BIBLIOGRAPHIE: Voir site Internet du cours http://cours-enac.epfl.ch/

LIAISON AVEC D'AUTRES COURS:

Préalable requis: Cours ENAC III et IV

FORME DU CONTROLE: Examen écrit
3e semestre
Titre: ANALYSE III

Enseignant: Philippe METZENER, chargé de cours MA

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 4</td>
</tr>
<tr>
<td>GC</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Cours 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Présenter les outils de base de l’analyse vectorielle nécessaires aux sciences de l’ingénieur.
Introduire quelques éléments de l’analyse de Fourier.

OBJECTIONS
Showing the basic tools of the vectorial analysis necessary for the engineering sciences.
Introducing some elements of Fourier analysis.

CONTENU
- Champs scalaires et champs vectoriels.
- Ares lisses et intégrales curvilignes.
- Morceaux de surfaces et intégrales de surface.
- Les opérateurs différentiels : gradient, divergence, rotationnel et laplacien.
- Les théorèmes de Stokes et de Gauss (divergence).
- Les formules de Green.
- Introduction aux séries de Fourier.
- Résolution des équations des ondes et de la chaleur par la méthode de Fourier.
- Applications : dérivation et étude de quelques équations classiques de la physique.

CONTENTS
- Scalar fields and vectorial fields.
- Smooth curves and curvilinear integrals.
- Pieces of surfaces and surface integrals.
- The differential operators: gradient, divergence, rotational and laplacian.
- The Stokes and Gauss divergence theorems.
- The Green’s formulae.
- Introduction to the Fourier series.
- Solutions of the heat and wave equations via the Fourier method.
- Applications: derivation and study of some classical equations.

FORME DE L’ENSEIGNEMENT: Cours ex cathedra, exercices en salle

BIBLIOGRAPHIE: M. Spiegel: Analyse vectorielle et Analyse de Fourier
Shaum, McGraw-Hill 1973
Polycopié des notes du cours

NOMBRE DE CREDITS: 4

LIAISON AVEC D’AUTRES COURS:
Préalable : Analyse I et II, Algèbre linéaire I et II.
Préparation pour: L’étude des équations différentielles en usage dans les sciences de l’ingénieur.

SESSION D’EXAMEN: Printemps
FORME DU CONTROLE: écrit
Titre : PROBABILITE ET STATISTIQUE I

Enseignant : Prof. Thomas Mountford, MA

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Par semaine: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cours</td>
</tr>
<tr>
<td>Exercices</td>
<td>1</td>
</tr>
<tr>
<td>Pratique</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Les notions de probabilité sont importantes en elles-mêmes et servent de base à la théorie des statistiques que l’on traitera dans la deuxième partie du cours. Je voudrais exposer les résultats de base ainsi que donner un aperçu de l’importance quotidienne des idées probabilistes.

CONTENU

- Résultats combinatoires, y compris la forme binomiale.
- Le théorème de Bayes et la probabilité conditionnelle. L’indépendance. La formule des probabilités totales.
- Les variables aléatoires. Les lois naturelles et utiles y compris la loi de Poisson, la gaussienne, la binomiale, l’exponentielle.
- L’espérance, la variance, la corrélation et leur signification intuitive.
- La loi des grands nombres.
- Le théorème de limite centrale.

FORME DE L’ENSEIGNEMENT: Ex cathedra et exercices en classe

FORME DU CONTROLE: Contrôle continu. Branché d’examen (écrit)

BIBLIOGRAPHIE: Initiation aux probabilités par S. Ross, PPUR

NOMBRE DE CREDITS: 3

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Probabilités et statistique II
Titre : PROGRAMMATION

Enseignant : Jarle HULAAS, chargé de cours IN

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

L'étudiant sera à même de :
- Utiliser un système informatique pour la mise au point de programmes.
- Coder une solution informatique en C (sous-ensemble de Java ou C++).
Comprendre et utiliser des algorithmes et modules existants

CONTENU

Utilisation du compilateur, éditeur, débogueur.
Déclarations et instructions. Expressions arithmétiques. Types de données élémentaires.
Instructions élémentaires d'entrée et sortie. Fonctions et procédures. Structures.
Boucles. Enregistrement et tableaux. Fichiers séquentiels.
Programmation d'algorithmes simples. Conception d'un programme.

FORME DE L’ENSEIGNEMENT : Cours ex-cathedra. Ex. sur ordinateur

BIBLIOGRAPHIE : Copie des transparents du cours

LIAISON AVEC D'AUTRES COURS :
- Préalable requis:
- Préparation pour:

FORME DU CONTROLE :
- Examen écrit

NOMBRE DE CREDITS : 3

SESSION D'EXAMEN : printemps
Titre : PHYSIQUE GÉNÉRALE III

Enseignant: Prof. Giovanni Dietler, PH

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>3</td>
<td>✗</td>
<td></td>
<td></td>
<td>Cours 2 Exercices 2 Pratique</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Par semaine:</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître les phénomènes physiques fondamentaux et comprendre les lois qui les décrivent. Apprendre à utiliser l'outil mathématique pour décrire les systèmes physiques ainsi que leur évolution. Connaître les applications en science et technique.

CONTENU

– **Electromagnétisme**
 Champ électrique et magnétique dans la matière, polarisation et aimantation, équations de Maxwell, circuits électriques.

– **Oscillations**
 Mouvement harmoniques, oscillateurs couplés, oscillateurs amortis et forcés.

– **Ondes**
 Ondes dans un milieu matériel et électromagnétiques, propagation, effet Doppler, phénomènes d’interférence.

FORME DE L’ENSEIGNEMENT: Ex cathedra et exercices dirigés en classe

BIBLIOGRAPHIE:
Notes polycopiées

LIAISON AVEC D’AUTRES COURS:
Préalable requis: Analyse I et Analyse II

FORME DU CONTROLE:
examen écrit

Contrôle continu avec systèmes de bonus : exercices rendus et tests en cours de semestre

NOMBRE DE CREDITS: 4
SESSION D’EXAMEN: printemps
Titre: BIOLOGIE II
Enseignants: Prof. Christof Holliger, SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître la théorie des cinétiques enzymatiques ainsi que les cinétiques de croissance et de mortalité microbienne

Comprendre les techniques utilisées en génie génétique et leurs applications

Connaître les différentes interactions entre les microorganismes et l'homme

Comprendre l'anatomie et la physiologie des animaux et des végétaux

CONTENU

Enzymologie
Enzymes et cinétiques enzymatiques

Croissance microbienne
Théorie de la croissance, influence des paramètres de l'environnement

Génie Génétique
Mutation, transfert génétique et recombinaison
Outils, techniques et applications

Interactions homme-microbe
Interactions bénéfiques
Facteurs de virulence et toxines
Mécanismes de défense de l'hôte

Contrôle des microorganismes
Méthodes physiques et chimiques

Anatomie et physiologie végétales et animales
Morphologie, croissance et transport des nutriments chez les végétaux
Structure, fonction et nutrition chez les animaux

OBJECTIVES

To know the theory of enzymatic, growth and death microbial kinetics

To understand the principles and techniques used in genetic engineering and their applications

To know the different interactions between the man and micro-organism

To understand the anatomy and physiology of plant and animal

CONTENTS

Enzymology
Enzymes and kinetics

Microbial growth
Growth theory, environmental effects on microbial growth

Genetic engineering
Mutation, genetic transfert and recombination processes
Tools, techniques and applications

Human-microorganism interactions
Beneficial interactions
Virulence factors and toxins
Host defense mechanisms

Microbial growth control
Chemical and physical methods

Plant and animal anatomy and physiology
Plant morphology, growth and nutrient transport Structure, Animal structure, function and nutrition

FORME DE L'ENSEIGNEMENT: Cours ex cathedra

BIBLIOGRAPHIE: Notes de cours polycopiés et Brocks Biology of Microorganisms

LIAISON AVEC D'AUTRES COURS:

Préalable : Chimie biologique I et Biologie I

Préparation pour: Mineur en Biotechnologie environnementale

NOMBRE DE CREDITS: 2

SESSION D'EXAMEN: Printemps

FORME DU CONTROLE: Examen écrit
Titre : MECANIQUE DES FLUIDES I

Enseignant: Christophe Ancey, chargé de cours GC

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 3</td>
</tr>
<tr>
<td>SIE</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Introduction à l'hydrodynamique des liquides parfaits et réels

CONTENU

INTRODUCTION : généralités, lois de conservation, unités de mesure, propriétés des liquides.

HYDROSTATIQUE : pression en un point, équations de l'hydrostatique, variation verticale de la pression, mesure de pression, forces hydrostatiques sur des parois, forces hydrostatiques sur des corps immergés, hydrostatique dans d'autres champs de force; exercices.

HYDROCINEMATIQUE : mouvement d'un fluide, équation de continuité, fonction du courant, écoulement irrotationnel, potentiel des vitesses, écoulements potentiels plans; écoulement dans les milieux poreux; exercices.

HYDRODYNAMIQUE DES LIQUIDES PARFAITS : équations de l'hydrodynamique, équations de continuité, équations intrinsèques, équation de Bernoulli, équation de l'énergie, équation de la quantité de mouvement, concept du volume de contrôle, mesure de vitesse, mesure de débit, quelques applications (formule de Torricelli, phénomène de Venturi, écoulement à vortex, écoulement non permanent, changement de direction, changement de section); exercices.

HYDRODYNAMIQUE DES LIQUIDES REELS : équations de l'hydrodynamique pour écoulement laminaire, quelques écoulements laminaires (écoulement dans une conduite cylindrique, écoulement entre deux plaques parallèles, écoulement rampant), expérience de Reynolds, turbulence, équations de l'hydrodynamique pour écoulement turbulent, répartition de vitesse, similitude des écoulements; exercices.

FORME DE L'ENSEIGNEMENT: Cours basé sur la documentation

LIAISON AVEC D'AUTRES COURS:

<table>
<thead>
<tr>
<th>Préalable requis:</th>
<th>Physique, Mécanique</th>
</tr>
</thead>
</table>

| Préparation pour: | Constructions hydrauliques, Hydrologie générale |

FORME DU CONTROLE: Examen écrit couplé avec Hydrologie générale

NOMBRE DE CREDITS: 3

SESSION D'EXAMEN: printemps
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSIE</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Introduction à la météorologie : atmosphère, temps et climat.

CONTENU

Météorologie

FORME DE L'ENSEIGNEMENT: ex cathedra

BIBLIOGRAPHIE: Polycopiés et notes de cours

LIAISON AVEC D'AUTRES COURS:

Préalable requis:

Préparation pour: Photochimie atmosphérique

FORME DU CONTRÔLE:

BRANCHE DE SEMESTRE
NOMBRE DE CREDITS : 2
SESSION D'EXAMEN : printemps
Titre: METHODES D'ESTIMATION

Enseignant: Prof. Bertrand Merminod, SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>28</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS

A la fin du cours, les étudiants seront capables de:
- comprendre les principales méthodes de compensation des mesures et d'estimation des paramètres;
- appliquer certains modèles à des problèmes concrets touchant à diverses sciences expérimentales, notamment dans le domaine de l'environnement.

CONTENU

Propagation de variance
- Définition des types d'erreurs
- Mesures d'égale et d'inégale précision
- Observations indépendantes et corrélées
- Covariances, cofacteurs et poids
- Propagation des erreurs maximales et moyennes

Compensation conditionnelle
- Modèle fonctionnel et modèle stochastique
- Principe des moindres carrés
- Analyse des résultats

Compensation paramétrique
- Modèle fonctionnel
- Analyse des résultats
- Itérations, lien avec la régression linéaire
- Evaluation de l'adéquation des modèles
- Faiblesses des moindres carrés et alternatives

Applications dans diverses sciences expérimentales avec le logiciel MatLab
en physique (gaz parfait, circuit électrique, ...), en chimie (pesée, dilution, ...), en géométrie, ...

FORME DE L'ENSEIGNEMENT: ex cathedra, avec exercices en classe

BIBLIOGRAPHIE: Polycopié, notes de cours, exercices corrigés

LIAISON AVEC D'AUTRES COURS: Probabilité et statistique
Préalable requis: Analyse I et II, Algèbre linéaire
Préparation pour: Toutes les sciences expérimentales — Campagnes de terrain — Localisation par satellites — Navigation

FORME DU CONTROLE: Interrogations écrites facultatives. Examen écrit

BRANCHE DE SEMESTRE

NOMBRE DE CREDITS : 2
SESSION D'EXAMEN : printemps
TOPOMETRIE

Prof. Bertrand Merminod, SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales</th>
<th>Par semaine</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>28</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Comprendre les principes des instruments de terrain
Exécuter des calculs de levé et d'implantation
Illustrer le calcul de compensation
Lier les concepts théoriques et le contexte de leur application

CONTENU

Détermination d'un point:

Réseaux terrestres:
triangulation – polygonation – polygonale avec boussole ou gyroscope – chaîne de polygones

Localisation et positionnement:
position absolue et relative – orientation – navigation (position et orientation en temps réel)

Techniques astronomiques:
survol historique – principes de l’astronomie de position – déflection de la verticale – point de Laplace

Techniques satellitaires:

FORME DE L’ENSEIGNEMENT: ex cathedra, avec démonstrations et exercices en classe

BIBLIOGRAPHIE: Polycopiés et notes de cours

LIAISON AVEC D'AUTRES COURS: Analyse, Calcul de compensation

Préalable requis: Topographie, Géoinformation

Préparation pour: Toutes les branches de la géomatique – Campagnes de terrain

FORME DU CONTROLE: Exercices notés
Interrogations écrites

BRANCHE DE SEMESTRE

NOMBRE DE CREDITS : 2

SESSION D'EXAMEN: printemps
Titre : COURS ENAC III

Enseignants: Profs. André Musy, Anton Schleiss, Robert Rivier, Patrick Mestyelan

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC, SIE, AR</td>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Le cours Enac de la 2e année pose la question du développement territorial comme phénomène global, en s'appuyant sur les connaissances en matière de lecture et compréhension acquises pendant le cours de première année. Les étudiants vont découvrir les rapports entre les différents problèmes qui ont généré des interventions, les moyens utilisés pour les mettre en œuvre, ainsi que leur effets sur le territoire.

CONTENU

Le premier semestre se concentre sur le développement de la vallée du Rhône à travers une suite de quatre modules. La discussion, axée dans un premier temps sur les ressources naturelles existantes et leur utilisation permettra ensuite d'étudier les impacts des infrastructures et les corrections des cours d'eau. Une troisième étape mettra en évidence les principaux défis, enjeux et procédures de planification multimodale des transports. Le semestre intégrera enfin les aspects liés au développement des agglomérations urbaines.

FORME DE L’ENSEIGNEMENT: cours ex cathedra, ex. pratiques

BIBLIOGRAPHIE: voir http://cours-enac.epfl.ch

LIAISON AVEC D'AUTRES COURS:

Préalable requis: cours ENAC I et II

Préparation pour:

NOMBRE DE CREDITS:

4 pour III et IV

SESSION D’EXAMEN :

Printemps

FORME DU CONTROLE

Continu
4e semestre
OBJECTIFS

Le cours a pour but de sensibiliser les étudiants, d’une part aux faits et résultats de base des statistiques et d’autre part aux limites des techniques présentées et à leurs interprétations.

CONTENU

• Les questions d’échantillonnage, l’échantillon simple et l’échantillon stratifié. Pourquoi l’on emploie les moyens probabilistes ?
• Les estimateurs et leurs propriétés asymptotiques. La théorie asymptotique des estimateurs de maximum vraisemblance.
• Les tests d’hypothèses dont le test z, le test t, le test du khi-deux, la théorie asymptotique à l’arrière plan. Le lemme de Neyman Pearson.
• Les intervalles de confiance et leur lien avec les test d’hypothèses.
• L’analyse de variance à plusieurs niveaux et la régression simple.
<table>
<thead>
<tr>
<th>Titre: HYDROLOGIE GENERALE</th>
<th>Titre: GENERAL HYDROLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: Prof. André Musy, SIE</td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>SIE</td>
<td>4</td>
</tr>
<tr>
<td>GC</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
- Initier les étudiants à la problématique de l’eau pour l’Homme, la Nature et la Société
- Comprendre les systèmes hydrologiques, leurs caractéristiques essentielles, leur comportement et les effets anthropiques
- Décrire les aspects météorologiques, l’organisation et le contrôle des données acquises
- Expliquer les processus essentiels de la production et de l’écoulement de l’eau en milieux naturels

OBJECTIVES
- Introduce the students to water problems for Mankind, Nature and Society
- Understand the hydrological systems, their essential characteristics, their behaviour and the anthropic effects
- Describe the meteorological aspects, the organisation and control of acquired data
- Explain the essential processes on production and water runoff in natural areas

CONTENU
- Partie introductive sur l’hydrologie et les ressources en eau; définition et terminologie.
- Le cycle et le bilan hydrologiques.
- Le bassin versant: typologie et caractéristiques.
- Les éléments du cycle hydrologique
 - précipitation
 - évaporation / interception
 - infiltration/écoulement
 - stockage
 - pour chaque composante ci-dessus: définition, dimensions spatiales et temporelles, caractéristiques et comportements
- Les régimes hydrologiques
- La mesure hydrologique
- L’organisation et le contrôle des données
- Les processus et la réponse hydrologiques

CONTENT
- Introductory part on hydrology and water resources, definition and terminology
- Hydrological cycle and balance
- Types and characteristics of the watershed
- Elements of the hydrological cycle:
 - rainfall
 - evaporation / interception
 - infiltration / runoff
 - storage
 - for each of the above components: definition, spatial and real-time dimensions, characteristics and behaviours
- Hydrological regimes
- Hydrological measurements
- Data organisation and control
- Hydrological processes and response

FORME DU CONTROLE:
Examen écrit

SESSION D’EXAMEN:
été

NOMBRE DE CREDITS : 2

BIBLIOGRAPHIE:
"Hydrologie: une science de la nature" (PPUR), exercices et résolutions, questions et tests d’auto-évaluation sur le Web

FORME DE L’ENSEIGNEMENT:
à distance sur Internet

LIAISON AVEC D’AUTRES COURS:
Préalable requis: Mécanique de fluides I et II
Préparation pour: Hydrologie appliquée, Aménagements hydrauliques
Titre: PEDOLOGIE I

Enseignant: vacat

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Voir page Web http://ssie.epfl.ch/plan_etude/Sem3-6_04-05.php

CONTENU

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:
Préalable requis:
Préparation pour:

FORME DU CONTROLE:

SESSION D'EXAMEN : été
NOMBRE DE CREDITS : 2
<table>
<thead>
<tr>
<th>Titre:</th>
<th>PHYSIQUE DU SOL I</th>
<th>Title:</th>
<th>SOIL PHYSICS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>Prof. André Mermoud, SIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section (s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Option</td>
</tr>
<tr>
<td>SIE</td>
<td>4</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Comprendre et savoir modéliser le comportement et les mouvements d'eau dans le sol.

Acquérir les préalables indispensables à la définition de principes de gestion adéquats des sols et des eaux souterraines (mise en valeur agricole des terres et des eaux, protection et amélioration des sols, sauvegarde des nappes souterraines, etc.).

GOALS

To be able to understand and to model the behavior and the movement of water in the soil.

To acquire the basic elements to define adequate and sustainable management principles of soil and groundwater.

CONTENU

- Généralités: définitions préalables, bilan hydrique d'un sol
- Propriétés de la phase solide du sol
- Propriétés de la phase liquide du sol
- Etat de l'eau du sol: notion de teneur en eau (définition, mesure, représentation graphique), taux remarquables d'humidité du sol, potentiel de l'eau du sol (définition, mesure et représentations graphique)
- Dynamique de l'eau du sol
 - description mathématique des transferts
 - transferts en milieu saturé
 - transferts en milieux non saturés

CONTENT

- Miscellaneous: prelimi. definition, field water balance
- Basic physical properties of soils and water
- Basic physico-chemical properties of soil water
- State of water in soil: water content (definition, measurement, graphical presentation), characteristic soil water contents, energy state of water in soil (definition, measurement, graphical representation)
- Water movement in soil
 - mathematical description
 - water flow in saturated soil
 - water flow in unsaturated soil

FORME DE L'ENSEIGNEMENT: Cours et exercices

BIBLIOGRAPHIE: Réf. bibliographique, corrigés des exercices

LIAISON AVEC D'AUTRES COURS: Pédologie 1

Préalable requis: Mathématiques, Physique, Chimie, Biologie

Préparation pour: Physique du sol II, Pédologie II, Gestion du régime hydrique du sol, Remédiation des sols et des nappes, Conservation des sols et gestion des systèmes naturels, Gestion intégrée des eaux

NOMBRE DE CREDITS : 2

SESSION D'EXAMEN : été

FORME DU CONTROLE: écrit
OBJECTIFS

Ce cours vise à donner aux étudiants des connaissances juridiques de base tant en droit public que privé et à les sensibiliser à des problèmes juridiques concrets liés à la vie quotidienne ainsi qu’à l’exercice de leur future profession.

OBJECTIVE

The objective of this course is to provide the students with an understanding of basic legal concepts of public and private law as well as a sense of concrete legal issues related to daily life as well as to their future profession.

CONTENU

1. Introduction générale au droit :
 Fonction et notion du droit, les sources du droit, les divisions du droit

2. Les grands principes du droit constitutionnel

3. Les grands principes du droit administratif

4. Notions de droit civil :
 Droit des personnes, droits réels, propriété intellectuelle

5. Notions du droit des obligations :
 La source des obligations
 Notions du droit des contrats
 La responsabilité civile

CONTENTS

1. General introduction to law:
 Function and basic concepts of law, origin of law, kinds of law

2. Principles of constitutionnal law

3. Principles of administrative law

4. Basic concepts of civil law:
 Law of personality, property law, intellectual property rights

5. Basic concepts of the law of obligations:
 Sources of obligations
 Basic concepts of contract law
 Civil liability

FORME DE L’ENSEIGNEMENT: Cours interactif

BIBLIOGRAPHIE: Polycopié, textes législatifs

liaison avec d'autres cours:

Préalable requis:
Préparation pour: Législation environnementale, Contrats et responsabilité professionnelle

FORME DU CONTROLE :
Ecrit

NOMBRE DE CREDITS : 2
SESSION D’EXAMEN : été
<table>
<thead>
<tr>
<th>Titre: MICROBIOLOGIE ET BIOLOGIE DES SOLS ET DES EAUX</th>
<th>Title: AQUATIC AND TERRESTRIAL BIOLOGY AND MICROBIOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignants: vacat</td>
<td></td>
</tr>
<tr>
<td>Section (s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>SIE</td>
<td>4</td>
</tr>
</tbody>
</table>

					Cours: 2
					Exercices: 0
					Pratique: 0

OBJECTIFS

Acquérir des connaissances sur la microbiologie et la biologie du sol et de l'eau

Comprendre les rôles des organismes lors de la dégradation des matières organiques et minérales

Comprendre le fonctionnement des microsystèmes biologiques terrestres et aquatiques

OBJECTIVES

To acquire knowledge on the microbiology and biology of terrestrial and aquatic environments

To understand the microorganism contribution in the degradation of organic and mineral matter

To assimilate the functioning of terrestrial and continental aquatic microsystems

CONTENU

Organismes du sol et leur rôle
Microflora et faune du sol
Transformation des déchets végétaux et animaux et des substances minérales
Cycles biogéochimiques du carbone, azote, soufre et fer

Communication fonctionnelle entre le sol et la plante
Interactions et symbioses

Méthodes en écologie microbienne
Mesure de la biomasse, de son activité et sa diversité
Méthodes phénotypique et biomoléculaire

Biologie des eaux
Organismes et microorganismes de l'eau

Ecologie microbienne des milieux aquatiques naturels
Limnologie biologique
Interactions trophiques

CONTENTS

Soil organisms and their contribution
Soil microflora and fauna
Transformation of plant and animal wastes and mineral compounds
Biogeochemical cycles of carbon, nitrogen, sulfur and iron

Functional communication between soil and plant
Interactions and symbiosis

Microbial ecology methods
Measurement of biomass, its activity and diversity
Phenotypical and biomolecular methods

Biology of aquatic environments
Organisms and microorganisms of aquatic environments

Microbial ecology of natural aquatic environments
Biological limnology
Trophical relations

FORME DE L'ENSEIGNEMENT: Cours ex cathedra

BIBLIOGRAPHIE: Notes de cours polycopiés et Brocks Biology of Microorganisms

LIAISON AVEC D'AUTRES COURS:

Préalable : Chimie biologique I, Biologie I et II

Préparation pour: Mineur en Biotechnologie environnementale et Ingénierie des eaux, du sol et des écosystèmes

NOMBRE DE CREDITS: 2

SESSION D'EXAMEN: Eté

FORME DU CONTROLE: Exam. oral
<table>
<thead>
<tr>
<th>Titre:</th>
<th>CHIMIE ENVIRONNEMENTALE I</th>
<th>Title:</th>
<th>ENVIRONMENTAL CHEMISTRY I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>Prof. Joseph Tarradellas, Prof. Vera Slaveykova, SIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semestre</td>
<td>4</td>
<td>Oblig.</td>
<td>×</td>
</tr>
<tr>
<td>Option</td>
<td></td>
<td>Facult.</td>
<td></td>
</tr>
<tr>
<td>Heures totales:</td>
<td>26</td>
<td>Par semaine:</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cours</td>
<td>1</td>
</tr>
<tr>
<td>Pratique</td>
<td></td>
<td>Exercices</td>
<td>1</td>
</tr>
</tbody>
</table>

OBJECTIFS

A partir de l'observation des grandes réactions chimiques et biochimiques des écosystèmes et des organismes, connaître les molécules et les méca-nismes réactionnels qui en modifient la cinétique (macropolluants) ou la nature (micropolluants).

Être capable de qualifier et de quantifier les principaux polluants chimiques. Connaître les fondements théoriques et les critères d'application pratique des méthodes de la chimie analytique de l'environnement et développer le souci du contrôle de qualité.

CONTENU

- Échantillonnage et préparation des échantillons.
- Étude des micropolluants dans les échantillons de l'environnement:
 - paramètres globaux
 - analyses par colorimétrie
 - chromatographie ionique
- Analyse des micropolluants inorganiques en traces:
 - techniques de spectroscopie atomique
 - techniques électrochimiques
 - spéciation des éléments traces.
- Analyse des micropolluants organiques en traces:
 - méthodes d'extraction et de purification
 - méthodes de séparation, chromatographie gazeuse et liquide
 - détecteurs (FID, FPD, NPD, ECD, MS).
- Traitement des résultats.
- Biosenseurs analytiques, immunoessais.

GOALS

Based on the main chemical reactions of the ecosystems and the biota, to acquire the knowledge of the molecules and the reactions involved in the change of their kinetics (macropolluants) and their nature (micropolluants).

Be able to qualify and quantify the main chemical pollutants. To know the theoretical background and the criteria of use of the environmental analytical chemistry methods and to develop the attention to the quality control.

CONTENTS

- Types of distortion of the main chemical and biochemical reactions. Principle of the three polluting actions. Characteristics and origin of chemical macro- and micropollutants.
- Sampling and sample handling.
- Study of macropollutants in environmental samples:
 - global parameters
 - colorimetric methods.
 - Ion chromatography
- Trace inorganic micropollutants analysis:
 - atomic spectroscopy
 - electrochemical methods
 - trace elements spéciation.
- Trace organic pollutants analysis:
 - extraction and clean-up methods
 - separation methods, gaz and liquid chromatography
 - detectors (FID, FPD, NPD, ECD, MS).
- Treatment of the results.
- Analytical biosensors.
- Quality control in environmental analytical chemistry.

FORME DE L'ENSEIGNEMENT: Cours ex cathédra

LIAISON AVEC D'AUTRES COURS: Chimie environnementale II

Préalable requis: Chimie générale, Chimie biologique I

Préparation pour: Master

NOMBRE DE CREDITS 2

SESSION D'EXAMEN Été

FORME DU CONTROLE: Oral
Titre: GÉNIE DES PROCÉDES I
Title: PROCESS ENGINEERING I

Enseignants: Prof. Paul Péringuey, SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 2</td>
</tr>
</tbody>
</table>

OBJECTIFS
Acquérir les principes fondamentaux du génie des procédés.

CONTENU
Principes de base du génie des procédés
Masse, poids, force, travail, énergie et puissance.
Unités, groupes dimensionnels, analyse dimensionnelle.
Réacteurs chimiques et biologiques. Equipements et contrôles.
Pompes, systèmes de tuyauterie et vannes.
Opérations unitaires
Sédimentation, précipitation, flocculation, cristallisation.
Filtration, centrifugation, flottation.
Stérilisation, déshydratation, distillation.
Bio systèmes microbiens
Définition, caractéristiques, paramètres de procesus.
Mode de fonctionnement des bioreacteurs.
 Cinétiques chimiques élémentaires. Equilibre chimique.
 Colloïdes et chimie de surface.
 Transport, adsorption, absorption et d’hydrolyse des substrats solubles et des colloïdes.

Transfert de masse et de chaleur
Flux massique. Convection. Diffusion moléculaire.
Loi de Henry. Théorie des deux films. Coefficient de transfert.
Flux de chaleur. Resistance thermique et conductivité.
Échangeurs de chaleur à co- et à contre courant.

Design élémentaire de procédé
Diagrammes de bloc et de flux. Profils hydrauliques.
Bilans de masse et de chaleur.
Réacteurs idéalisés. Réacteurs batch et continu.
Réacteurs à mélange intégral et piston. Comparaison des performances. Réacteurs batch et batch séquentiel.

OBJECTIVES
Acquire the basic principles of process engineering.

CONTENTS
Fundamentals of process engineering
Mass, weight, force, work, energy and power.
Units, dimensionless groups, dimensional analysis.
Chemical and biological reactors.
Facilities and control. Pumps, pipeworks ans valves.
Unit operations
Settling, precipitation, flocculation, crystallization.
Filtration, centrifugation, flotation.
Sterilization, dewatering, distillation.
Microbial biosystems
Definition, characteristics, process parameters.
Operational modes of bioreactors.
Elementary chemical kinetics and equilibrium.
Colloids ans surface chemistry.
Transport, adsorption, absorption and hydrolysis of soluble substrates and colloids.

Mass and heat transfer
Henry’s law. Two-film theory. Transfer coefficient.
Heat flow. Thermal resistance and conductivity.
Co-and countercurrent heat exchangers.

Basic process design
Bloc and flow diagrams. Hydraulic profiles
Mass and heat balance calculations
Idealized reactors. Batch and continuous reactors.
CSTR and Plug-low reactors. Performance comparison.
Fed-batch ans sequencing batch reactors.

FORME DE L’ENSEIGNEMENT: Cours ex cathedra
BIBLIOGRAPHIE: Notes de cours polycopiés et exercices
LIAISON AVEC D’AUTRES COURS:
Préalable : Biologie, Chimie biologique
Préparation pour: Génie et modélisation des bioprocéédés de l’environ.

NOMBRE DE CREDITS: 4
SESSION D’EXAMEN: Été
FORME DU CONTROLE: Examen écrit
Titre: INFORMATIQUE DE L'INGENIEUR

Enseignant: Jean-Daniel BONJOUR, chargé de cours SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 2</td>
</tr>
</tbody>
</table>

OBJECTIFS
- Aborder, sous un angle pratique, divers chapitres choisis de l'informatique dans une optique résolument orientée ingénieur (avec des exemples métier) et non informaticien : dessin vectoriel 2D, modélisation 3D, manipulation d'images raster, programmation orientée ingénieur, visualisation et gestion de données
- Etant donné l'ubiquité du Web, ce cours aborde également les technologies Web, en particulier HTML et PHP

CONTENU

Dessin technique et modélisation : MicroStation
- introduction rapide à MicroStation : outils 2D de base, attributs graphiques, niveaux, import/export...
- aperçu des principes de base relatifs à la modélisation 3D, l'image de synthèse et l'animation

Manipulation d'images
- formats d'images raster, profondeur de couleur, compression, choix de ces paramètres en fonction de l'usage...
- outils de visualisation, conversion de formats et retouche d'image...
- périphériques graphiques et technologies : écrans, scanner, imprimantes, traceurs

Outils de programmation orientés ingénieur : Octave/ Matlab
- variables, workspace, environnement, opérateurs et fonctions de base, séries, vecteurs, matrices
- M-files : scripts et fonctions, interaction avec l'utilisateur, import/export de données
- visualisation de données, graphiques complexes
- panorama d'autres progiciels

Gestion de données : FileMaker et MySQL
- structuration de base de données, types de données, multi-fichier relationnel, masques (saisie, liste, impression...)
- utilisation : saisie, modification, recherche (filtre, requête), tris, importation/exportation, prévisualisation, impression (état, rapport), programmation (macros, boutons...)

Technologies Web
- outils Web, introduction à HTML/XHTML et aux feuilles de style CSS, bref aperçu sur JavaScript
- architecture du Web (client-serveur), protocole HTTP, architecture CGI (serveur-application)
- bref aperçu de la programmation PHP (pages dynamiques), couplage Web avec un SGBD (MySQL)
- brève introduction à XML

Introduction à Linux/Unix (en relation avec projet Poseidon)
- architecture et composants, installation, gestionnaire d'amorçage
- shells, commandes de base, redirection et pipes, scripts
- X-Window, KDE/GNOME et outils associés, ssh/scp, interoperabilité avec Windows et MacOS X

Sécurité informatique
- aperçu général sur les risques et les mesures de sécurité

FORME DE L'ENSEIGNEMENT: Exercices pratiques sur ordinateur
BIBLIOGRAPHIE: Support de cours et d'exercices (polycopiés)
LIAISON AVEC D'AUTRES COURS:
Préalable :
Instruments informatiques (1er sem.)
Programmation (3e sem.)
Préparation pour: autres branches utilisant l'informatique

NOMBRE DE CREDITS: 1
SESSION D'EXAMEN: Été, contrôle continu
FORME DU CONTROLE: Tests écrits en cours de semestre
Titre: GEOTECHNIQUE ET FONDATIONS

Enseignant: M. Mustafa Gencer, chargé de cours GC

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>4</td>
<td></td>
<td>x</td>
<td></td>
<td>42</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Identifier et caractériser les paramètres mécaniques des sols de fondation. Décrire les types d'ouvrages en contact avec le sol et leur mode de réalisation. Développer les théories permettant de résoudre certains problèmes types en géomécanique.

GOALS

CONTENU

Technologique des sols
Nature d'un sol; classification des sols et des roches; l'eau dans le terrain; compactage; déformabilité; résistance au cisaillement

Geostructures
Types, définitions, nomenclature, méthodes d'exécution.
Travaux d'excavation et remblayage, murs et parois de soutènement, fondations superficielles et profondes, stabilité des pentes, mécanique des roches, action de l'eau

CONTENTS

Fundamental of geomechanics
Nature of soils; soil and rock classification; groundwater seepage; compaction; deformability; strength

Geostructures
Types, definitions, nomenclature, construction methods.
Excavations and embankments, retaining structures, shallow and deep foundations, slope stability, rocks mechanics, action of groundwater

FORME DE L'ENSEIGNEMENT: cours ex-cathedra, exercices, essais en laboratoire

BIBLIOGRAPHIE: polycopié

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Géologie, résistance des matériaux

NOMBRE DE CREDITS 3

SESSION D'EXAMEN
Eté

FORME DU CONTROLE
Contrôle continu
Titre : FONCTIONNEMENT DES ECOSYSTEMES

Enseignants: Prof. Alexandre Buttler, SIE, François Gillet; François Freléchoux, chargés de cours SIE, Walter Rosselli, Martine Rebetez, WSL

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
<td>Par semaine: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaissance générale des milieux semi-naturels ou proches de l’état naturel et initiation de terrain : ressources et valeurs.
Connaissance des aspects fonctionnels des écosystèmes, ainsi que des dysfonctionnements liés aux activités humaines, en tant que base scientifique d’une approche écosystémique de l’utilisation des ressources biologiques et des projets de l’ingénieur.
Développer l’aptitude à évaluer des projets et à travailler dans les domaines d’ingénierie en tenant compte de la problématique des milieux naturels.

CONTENU

1. Écosystèmes forestiers
2. Écosystèmes sylvo-pastoraux
3. Écosystèmes marécageux
4. Écosystèmes fluviaux
5. Écosystèmes alpins
6. Effets des changements climatiques sur les milieux naturels
7. Biodiversité et milieux naturels sensibles

FORME DE L’ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

Préalable requis: Ecologie générale et biodiversité (1er sem. SIE)

Préalable conseillé: Atmosphère et climat (1er sem. SIE)
 Pédologie I (4ème sem. SIE)
 Hydrologie générale (4ème sem. SIE)

Préparation pour:

FORME DU CONTROLE:
Ecrit, 30 minutes

SESSION D’EXAMEN:
Eté

NOMBRE DE CREDITS: 3
Titre: PHOTO-INTERPRETATION

Enseignant: Prof. Otto Kölbl, SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>4</td>
<td>☐</td>
<td>X</td>
<td>☐</td>
<td>Par semaine: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Exercices: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

CONTENU
- caractéristiques de l’illumination naturelle et son interaction avec la végétation
- enregistrement d’image sur films photographiques couleurs et infrarouges
- perception d’image monoculaire et en 3D
- moyens pour la visualisation en 3D
- identification d’objets (arbres et essences) sur photo et sur le terrain
- élaboration sur ordinateur de cartes de peuplement et de cartes de vitalité
- combinaison de différentes sources d’information
- élaboration d’analyses statistiques afin d’arriver à une interprétation effective
- diverses applications : cartographie de la végétation, inventaires forestiers, etc.

FORME DE L’ENSEIGNEMENT: Cours ex cathedra, travaux pratiques
BIBLIOGRAPHIE: Polycopiés, Manual of Remote Sensing
LIAISON AVEC D’AUTRES COURS:
Préalable requis: SIRS

FORME DU CONTRÔLE: Examen oral
SESSION D’EXAMEN: été
NOMBRE DE CREDITS: 3
Titre : COURS ENAC IV

Enseignants: Profs. André Musy, Anton Schleiss, Robert Rivier, Patrick Mestelan

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours:</th>
<th>Exercices:</th>
<th>Pratique:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC, SIE, AR</td>
<td>4</td>
<td>☑</td>
<td></td>
<td></td>
<td>28</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Le cours Enac de la 2e année pose la question du développement territorial comme phénomène global, en s’appuyant sur les connaissances en matière de lecture et compréhension acquises pendant le cours de première année. Les étudiants vont découvrir les rapports entre les différents problèmes qui ont généré des interventions, les moyens utilisés pour les mettre en œuvre, ainsi que leur effets sur le territoire.

CONTENU

Le deuxième semestre reprend les quatre approches thématiques (ressources naturelles, aménagements hydrauliques, infrastructures de transport, développement urbain) dans un territoire allant de l’agglomération lausannoise jusqu’au Jura. L’accent sera mis sur les éléments du projet territorial, un processus complexe et interdisciplinaire.

FORME DE L’ENSEIGNEMENT: cours ex cathedra, ex. pratiques

BIBLIOGRAPHIE: voir http://cours-enac.epfl.ch

LIAISON AVEC D’AUTRES COURS:
- Préalable requis: cours ENAC I et II
- Préparation pour:

FORME DU CONTROLE: continu

NOMBRE DE CREDITS:
- 4 pour III et IV
Titre : SEMAINE ENAC I

<table>
<thead>
<tr>
<th>Enseignant:</th>
<th>Divers enseignants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>GC, SIE, SAR</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Sur une semaine entière, approfondissement de thèmes propres à l’environnement naturel, architectural et construit par un enseignement commun aux sections Sciences et Ingénierie de l’environnement, Architecture et Génie civil. Les étudiants des trois sections apprennent à travailler ensemble sur une même thématique, en fonction de leurs connaissances spécifiques.

CONTENU

Enseignement participatif sous des formes très variées, en fonction des enseignants, du thème et du contexte (cours, conférences, unités d’enseignement, séminaires, travaux de terrain, voyages). La semaine ENAC a lieu sur le site de l’EPFL ou hors les murs.

ORGANISATION

La Faculté propose une série de semaines ENAC sur des thèmes interdisciplinaires choisis. Les étudiants s’inscrivent aux trois semaines qu’ils préfèrent. L’affectation des étudiants aux différentes semaines proposées se fait par le comité des directeurs de section en tendant à équilibrer les effectifs des participants aux différentes semaines.

Les étudiants remettront aux enseignants un rapport sur les résultats de la semaine, sur lequel ils seront notés.

FORME DE L’ENSEIGNEMENT:

BIBLIOGRAPHIE :

LIAISON AVEC D’AUTRES COURS:

Préalable requis:

Préparation pour:

NOMBRE DE CREDITS : 2

FORME DU CONTROLE:

Rendu du rapport

SESSION D’EXAMEN : Été
5e semestre
<table>
<thead>
<tr>
<th>Titre:</th>
<th>ANALYSE SPATIALE</th>
<th>Title:</th>
<th>SPATIAL ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>Régis Caloz, chargé de cours, SIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Option</td>
</tr>
<tr>
<td>SIE</td>
<td>5</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
Maîtriser les concepts de l’Analyse spatiale et être capable d’identifier les domaines où il est profitable de l’appliquer
Maîtriser les processus numériques de l’Analyse spatiale
Avoir développé une attitude critique vis-à-vis de la qualité de l’information à référence spatiale

OBJECTIVES
Master the concepts of spatial analysis and identify domains which can benefit from its application
Master computational processes of spatial analysis
Develop critical perspective regarding the quality of spatial information

CONTENU
L’analyse spatiale, ses principes, son champ d’applications
L’analyse de l’espace géographique et sa modélisation
Analyse spatiale de variables continues
Echantillonnage, variographie (éléments de géostatistique), régionalisation par interpolations conventionnelles et krigeage,
Analyse spatiale de variables discrètes
Nature des informations, les statistiques de superficie, régionalisation, éléments d’analyse morphologique
Analyse du relief (modèle numérique d’altitude)
Nature des modèles, variables et indicateurs géomorphologiques dérivés, lignes de drainage, lignes de contours, visibilité, etc.
Analyse de réseaux

CONTENTS
Spatial analysis, its principles, its application domain
Spatial analysis and modeling of the geographic space
Spatial analysis using continuous variables
- Sampling, variography (introduction of geostatistics), regionalisation by conventional interpolations and kriging
Spatial analysis using discrete variables
- Nature of information, land use and land cover statistics, regionalisation, morphological analysis
Terrain analysis (digital terrain model)
- Nature of models, derived variables and geomorphological indicators, drainage line, contours line, visibility, etc.
Network analysis
- networks, shortest path, buffer analysis, etc.

FORME DE L’ENSEIGNEMENT: Cours ex cathedra et exercices informatiques

BIBLIOGRAPHIE: Notes de cours (copies transparents)

LIAISON AVEC D’AUTRES COURS:
Préalable : Statistique I et II, Photo-interprétation, SIRS I, Bases de données, Télédétection spatiale
Préparation pour: Pédologie, Hydrologie, Aménagement, etc.

NOMBRE DE CREDITS: 2

SESSION D’EXAMEN: Printemps

FORME DU CONTROLE: contrôle continu, écrit
STRUCTURES

Enseignant: Prof. Manfred Miehlbradt, GC

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>5</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Cours: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Pratique: 2</td>
</tr>
</tbody>
</table>

OBJECTIFS
Les étudiants seront capables de concevoir des structures simples, et de calculer et de dessiner leurs éléments constitutifs.
The students will be able to design and detail simple engineering structures.

CONTENU
- Construction en bois
 - matériau non homogène
 - (fibreux, fragile en traction)
 - éléments simples
 - (poutres, colonnes)
 - systèmes porteurs
 - (chevrons, pannes, pannes
 - chevrons, cadres, treillis)
 - détails de construction
 - (assemblages)
 - stabilité d'ensemble
 - (contreventement)
 - projet d'un ouvrage rural

- Timber structures
 - inhomogeneous material
 - (fibres, brittle in tension)
 - simple members
 - (beams, columns)
 - structural systems
 - (rafters, beams, purlins, frames, trusses)
 - structural details
 - (joints, connections)
 - overall stability
 - (bracings)
 - design of a rural engineering structure

FORME DE L'ENSEIGNEMENT: Cours ex cath., projet en groupes

BIBLIOGRAPHIE: Polycopiés, documentation professionnelle

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Structures I, Géotechnique et fondations
Préparation pour: Structures III

FORME DU CONTROLE: Contrôle continu

SESSION D'EXAMEN: Été
NOMBRE DE CREDITS: 2
<table>
<thead>
<tr>
<th>Titre:</th>
<th>TÉLÉDÉTECTION</th>
<th>Title:</th>
<th>REMOTE SENSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>Régis Caloz, chargé de cours SIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Option</td>
</tr>
<tr>
<td>SIE</td>
<td>5</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
Maîtriser les concepts et processus du traitement numérique d'image
Être capable d'évaluer, pour les domaines du Génie rural et de l'Environnement, les avantages et les limites de l'imagerie satellitaire
Évaluer les apports pour le Système d'information du Territoire

CONTENUS
Compléments de bases physiques de télédétection
L'image numérique
Transformations radiométriques
Transformations géométriques
Réhaussements - Modifications visuelles
Production et exploitation d'images non-spectrales
Zonage de l'image assisté par ordinateur
 - Classification multispectrale
 - Zonage par segmentation d'indice
 - Zonage par analyse texturale
 - Zonage par classes d'objets
Les programmes spatiaux de gestion de l'environnement et des ressources terrestres
Les applications de la Télédétection spatiale pour les aménagements et l'environnement

CONTENTS
Complements the fundamentals of physics for remote sensing
The numerical images
Radiometric transformations
Geometrical transformations
Image enhancement
Production and use of nonspectral images
Computer assisted image zoning
 - Multispectral classification
 - Zoning by index segmentation
 - Zoning by textural analysis
 - Zoning by object classes
Spatial programs for environment management and monitoring of terrestrial resources
Spatial remote sensing applications for land planning and environment

FORME DE L’ENSEIGNEMENT:
Cours ex cathedra et exercices informatiques

BIBLIOGRAPHIE:
Notes de cours (copies transparents)

LIAISON AVEC D’AUTRES COURS:
Préalable requis:
 - Statistique I et II, Photo-interprétation, SIRS I, Bases de données,
Préparation pour:
 - Pédologie, Hydrologie, Aménagement, Analyse spatiale

NOMBRE DE CREDITS
2

SESSION D’EXAMEN
Printemps

FORME DU CONTROLE
Examen écrit
<table>
<thead>
<tr>
<th>Titre: BIOTECHNOLOGIE ENVIRONNEMENTALE II</th>
<th>Title: ENVIRONMENTAL BIOTECHNOLOGY II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: Prof. Paul Péringer, SIE</td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>SIE</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
Acquérir les techniques de base microbiologiques, biochimiques et de culture de microorganismes utilisées en biotechnologie environnementale.

Concevoir et appliquer des modèles mathématiques simples à la quantification des cinétiques microbiennes dans des biosystèmes discontinus.

Maîtriser les paramètres physico-chimiques qui déterminent le comportement cinétique des biosystèmes microbien.

CONTENU
- Techniques de culture microbienne
 - Cinétiques de croissance microbienne
 - courbes de croissance, croissance exponentielle
 - taux et rendement de croissance
 - cinétiques michaéliennes
 - influence du substrat et des inhibiteurs
 - influence du pH et de la température
 - exérétion des produits
 - modèles mathématiques
 - Transfert de masse et d’énergie
 - transfert de chaleur
 - transferts gazeux
 - Travaux pratiques
 - techniques microbiologiques de base
 - diagnostic enzymatique des biosystèmes
 - étude des cinétiques de croissance
 - effet des paramètres physico-chimiques
 - étude de la biodégradabilité
 - instrumentation et régulations
 - aération et transfert d’oxygène, $K_{L,a}$

GOALS
Acquisition of basic microbiological, biochemical and cultivation techniques which are currently used in environmental biotechnology.

Conception and application of simple mathematical models for the quantification of microbial kinetics in batch biosystems.

Control of physico-chemical parameters which determine the kinetics of microbial systems.

CONTENTS
- Microbial cultivation techniques
 - Microbial growth kinetics
 - growth curves and exponential growth
 - growth rate and yield
 - Michaelis-Menten kinetics
 - influence of substrate and inhibitors
 - influence of pH and temperature
 - product excretions
 - mathematical models
 - Energy and mass transfers
 - heat transfer
 - gas-liquid transfers
 - Practice
 - basic microbiological techniques
 - enzymatic diagnostic of biosystems
 - growth kinetics studies
 - effects of physico-chemical parameters
 - biodegradability studies
 - instrumentation and controls
 - aeration and oxygen transfer, $K_{L,a}$

FORME DE L’ENSEIGNEMENT: Cours ex cathedra et exercices
BIBLIOGRAPHIE: Notes de cours polycopiés et manuel de TP
LIAISON AVEC D'AUTRES COURS: Chimie environnementale I
Préalable requis: Biotechnologie environnementale I
Préparation pour: Modules de Biotechnologie environnement.

NOMBRE DE CREDITS : 5
SESSION D’EXAMEN : Printemps
FORME DU CONTROLE: Examen écrit combiné avec note TP
OBJECTIFS
A partir de l'observation des grandes réactions chimiques et biochimiques des écosystèmes et des organismes, connaître les molécules et les mécanismes réactionnels qui en modifient la cinétique (macropolluants) ou la nature (micropolluants)

Etre capable de qualifier et de quantifier les principaux polluants chimiques. Connaître les fondements théoriques et les critères d'application pratique des méthodes de la chimie analytique de l'environnement et développer le souci du contrôle de qualité

GOALS
Based on the main chemical reactions of the ecosystems and the biota, to acquire the knowledge of the molecules and the reactions involved in the change of their kinetics (macropollutants) and their nature (micropollutants).

Be able to qualify and quantify the main chemical pollutants. To know the theoretical background and the criteria of use of the environmental analytical chemistry methods and to develop the attention to the quality control.

CONTENU
• Modes de distorsion des principales réactions chimiques et biochimiques. Règle des trois actions polluantes. Caractéristiques et sources des macro- et micropolluants chimiques.
• Échantillonnage et préparation des échantillons.
• Études des macropolluants dans les échantillons de l'environnement: - paramètres globaux - analyses par colorimétrie.
• Analyse des micropolluants inorganiques en traces: - chromatographie ionique - absorption atomique - spéciation des métaux lourds.
• Analyse des micropolluants organiques en traces: - méthodes d'extraction et de purification - méthodes de séparation, chromatographie gazeuse et liquide - détecteurs (FID, FPD, NPD, ECD, MS).
• Traitement des résultats.
• Biosensors analytiques, immunoessais.

CONTENTS
• Types of distortion of the main chemical and biochemical reactions. Principle of the three polluting actions. Characteristics and origin of chemical macro- and micropollutants.
• Sampling and sample handling.
• Study of macropollutants in environmental samples: - global parameters - colorimetric methods.
• Trace inorganic micropollutants analysis: - ion chromatography - atomic absorption - speciation of heavy metals.
• Trace organic pollutants analysis: - extraction and clean-up methods - separation methods, gas and liquid chromatography - detectors (FID, FPD, NPD, ECD, MS).
• Treatment of the results.
• Analytical biosensors.
• Quality control in environmental analytical chemistry.

FORME DE L’ENSEIGNEMENT: Cours ex cathedra
BIBLIOGRAPHIE: Polycopié
LIAISON AVEC D'AUTRES COURS:
Préalable requis: Chimie appliquée
Préparation pour: Chimie environnementale II, Gestion des milieux, Pollution des milieux

NOMBRE DE CREDITS: 5 pour I et II
SESSION D'EXAMEN
Eté 3e année
FORME DU CONTROLE: Examen oral pour I, combiné avec rapport pour II
Cours: ECOTOXICOLOGIE ET TOXICOLOGIE HUMAINE I
Enseignant: Dr Phaik Morgenthaler, chargée de cours SIE

Section (s) Semestre Oblig. Option Facult. Heures totales: 28
SIE 5 X

<table>
<thead>
<tr>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercises</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Apprendre les bases de la toxicologie humaine et les connaissances nécessaires à l’étude de l’impact des facteurs environnementaux sur la santé humaine et les outils de la toxicologie, ce qui permettra aux futurs ingénieurs de l’environnement de
- Collaborer avec les toxicologues et autres spécialistes de la santé humaine en cas de problèmes environnementaux
- Détecter les problèmes potentiels des nouvelles technologies sur l’environnement (Early warning)
- Réduire les problèmes environnementaux des nouvelles technologies.

CONTENU
Introduction à la toxicologie
Métabolisme des xenobiotiques
Toxicologie génétique
Toxicologie par voie récepteur
Toxicité d’organes
Mécanismes d’action des produits toxiques
Méthodes d’évaluation de la toxicité de produits chimiques
Toxicogénomiques
Facteurs environnementaux et santé humaine

OBJECTIVES
Engineers and scientists must address health and environmental problems that can be potentially caused by technological developments. This course provides students with information on the fundamentals of toxicology, and methods for the identification of hazards and evaluation of risks to human health that are posed by contaminants and pollutants.

CONTENTS
Principles of toxicology
Xenobiotic metabolism
Genetic toxicology
Receptor mediated toxicology
Systemic toxicology
Mechanism of actions of different classes of chemicals
Methods in toxicology
Toxicogenomics
Environmental health effects

FORME DE L’ENSEIGNEMENT: Ex cathedra; discussion et étude de cas.
BIBLIOGRAPHIE: Notes polycopiées
LIAISON AVEC D'AUTRES COURS:
Préalable :
Préparation pour:

POUR L'ENSEMBLE DU MODULE :
Nombre de crédits: 5 pour I et II

SESSION D'EXAMEN:
Eté

FORME DU CONTROLE:
Examen écrit
<table>
<thead>
<tr>
<th>Titre: HYDRAULIQUE ET RESEAUX</th>
<th>Title: HYDRAULICS NETWORKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: Jean-Louis Boillat, chargé de cours GC</td>
<td></td>
</tr>
<tr>
<td>Section (s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>SIE</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
- Application des démarches théoriques et expérimentales d’analyse des systèmes hydrauliques
- Solutionnement des problèmes de dimensionnement d’ouvrages et de gestion des eaux
- Maîtrise de la problématique du transport de l’eau et de ses impacts sur l’environnement

GOALS
- Develop expertise on the theoretical and experimental approach of the hydraulic systems
- Resolve the standard problems related to hydraulic works design and water management
- Master the general water transport problems in relation with its environmental impact.

CONTENU
- Les systèmes hydrauliques : adduction, distribution, évacuation, rétention, restitution
- Les écoulements en charge dans les galeries et dans les canalisations :
 - les lois de comportement ;
 - les réseaux ramifiés et maillés ;
 - les stations de pompage
- Les écoulements en nappe libre sur lits fixes :
 - permanents et uniformes ;
 - permanents et non uniformes ;
 - non permanents et non uniformes
- L’hydraulique des lits alluviaux :
 - le transport solide, charriage et suspension ;
 - l’équilibre et la stabilisation des lits naturels
- Les réseaux d’assainissement :
 - les bases légales, quantité et qualité ;
 - ouvrages types et particuliers ;
 - entretien et rénovation

CONTENTS
- The hydraulic systems : adduction, distribution, evacuation, retention, restitution.
- Pressure flows in tunnels and pipes :
 - fundamental laws ;
 - branching networks ;
 - meshing networks ;
 - pumping stations
- Free surface flows on fixed beds :
 - steady and uniform ;
 - steady and non uniform ;
 - non steady and non uniform.
- Natural rivers hydraulics :
 - sediment transport, bed and suspended load ;
 - natural beds equilibrium and stabilisation
- Sewer networks :
 - legal basis, quantity and quality ;
 - typical and particular works ;
 - maintenance and refurbishing

FORME DE L’ENSEIGNEMENT: Cours ex cathedra et exercices, travaux pratiques de laboratoire

BIBLIOGRAPHIE: Polycopié, recueil d’exercices avec corrigé, logiciels d’applications

LIAISON AVEC D’AUTRES COURS:
- Préalable requis: Hydraulique I, Hydrologie générale
- Préparation pour: Aménagements de génie rural, Hydrologie appliquée

NOMBRE DE CREDITS 5

SESSION D’EXAMEN
- Printemps 3e année

FORME DU CONTROLE
- Rapports de laboratoire et examen oral
<table>
<thead>
<tr>
<th>Titre: ASTRONOMIE ET LOCALISATION PAR SATELLITES</th>
<th>Title: SATELLITE POSITIONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: Hubert Dupraz, chargé de cours SIE, Prof. Bertrand Merminod, SIE</td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>SIE, GC, PH</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Assimiler les mécanismes fondamentaux de l’astronomie descriptive et comprendre quelques méthodes de localisation et d’orientation.

Comprendre les algorithmes de localisation GPS sur la base des mesures de code et de phase, en modes statique et cinématique.

Saisir les éléments nécessaires à la planification des travaux de terrain et percevoir les tendances de l’évolution des systèmes de positionnement.

CONTENU

Astronomie de position
Trigonométrie sphérique – Systèmes de coordonnées et de temps – Réfraction astronomique – Détermination d’azimuts et de positions – Caméra zénithale

Mesures satellitaires
Modèle des pseudo-distances (rappels) – Solution de navigation – Session statique – Modèle des mesures de phase – Différences simples, doubles et triples – Ambiguïtés et sauts de cycles – Réfraction atmosphérique

Algorithmes
Partition et décorrélation des observations – Moindres carrés séquentiels – Partition des paramètres

Modes de mesures GPS
Récepteurs bi-fréquence – Initialisation en mouvement – Levé intermittent – Planification des sessions de mesure – Précision et logistique

Évolution technologique
Autres systèmes de satellites – Combinaison avec des techniques terrestres – Localisation et télécommunications – Systèmes futurs

OBJECTIVES

To assimilate the fundamental mechanisms of the descriptive astronomy and to understand some methods to determine the position and the orientation.

To understand the algorithms for computing GPS positions based on code and phase observables, in static and kinematic modes.

To grasp the essential features for a proper planning of the field operations and to perceive the trends in the evolution of positioning systems.

CONTENTS

Astronomical positioning
Spherical trigonometry – Coordinates and time systems – Astronomical refraction – Orientation and positioning methods – Zenithal camera

Satellite Observables
Model for pseudo-ranges (refresher) – Navigation solution – Single point positioning – Model for carrier phases – Simple, double and triple differences – Cycle ambiguities and slips – Atmospheric refraction

Algorithms
Partitioning and decorrelation of observations – Sequential least squares – Partitioning of parameters

GPS measurement modes
Dual-frequency receivers – On-the-fly initialization – Stop-and-go survey – Mission planning – Precision and logistics

Technological Evolution
Other satellite systems – combination with terrestrial techniques – Positioning and telecommunications – Future systems

FORME DE L’ENSEIGNEMENT: Cours ex cathedra, exercices et travaux pratiques

BIBLIOGRAPHIE: Polycopiés *Astronomie de position, Localisation par satellites*

LIAISON AVEC D’AUTRES COURS: Positionnement et cartographie

Préalable: Topométrie, Calcul de compensation, Statistique

Préparation pour: Géodésie, Outils géomatiques

NOMBRE DE CREDITS: 5

SESSION D’EXAMEN:
Printemps

FORME DU CONTROLE:
Examen oral
Titre: PHYSIQUE DU SOL II

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Assimilier les principes régissant les mouvements d'eau, de substances solubles, de chaleur et de gaz dans le sol. Savoir modéliser ces processus.

Disposer des éléments nécessaires à la définition de principes de gestion adéquate et durable du sol et des eaux souterraines.

Connaître les fondements théoriques des écoulements vers les ouvrages de captage de l'eau souterraine.

CONTENU

- Modélisation du transport de substances solubles (sels, engrais, substances chimiques) dans le sol
- Salinisation du sol: mesures préventives et curatives
- Dynamique des gaz en milieux poreux
- Régime thermique du sol
- Régime de l'eau au champ
 - infiltration
 - redistribution
 - percolation
 - remontées capillaires et évaporation
- Écoulement vers les ouvrages de captage des eaux souterraines
 - écoulements vers les drains, fossés, puits, forages, en régime permanent et transitoire
 - détermination des caractéristiques hydrogéologiques des aquifères
- Pratique des mesures

GOALS

To assimilate the principles governing water flow, solute transport, heat transfer and gas exchanges in the soil. To be able to model these processes.

To acquire the basic elements to define adequate and sustainable management principles of soil and groundwater.

To know the theoretical aspects connected to the flow of groundwater to wells or agricultural drainage devices.

CONTENTS

- Modeling solute transport (salts, fertilizers, chemicals) in the soil
- Soil salinisation: preventive and curative actions
- Movement of gas in porous media
- Soil thermal regime
- Field water cycle
 - infiltration
 - redistribution
 - percolation
 - capillary rise and evaporation
- Flow to wells, drains and ditches under permanent and transient regimes
 - mathematical description
 - determination of the hydrogeological characteristics of the aquifers
- Soil properties measurements

FORME DE L'ENSEIGNEMENT:
Cours, exercices et laboratoire

BIBLIOGRAPHIE:
Liste réf. biblio., corrigés des exercices

LIAISON AVEC D'AUTRES COURS:
Pédologie II, Hydrologie appliquée

Préalable requis:
- Physique du sol I, Pédologie I, Hydraulique I
- Aménagements hydro-agricoles

Préparation pour:
- Aménagement de génie rural, Gestion des eaux, Gestion des milieux

NOMBRE DE CREDITS
5

SESSION D'EXAMEN
Printemps

FORME DU CONTROLE:
Examen oral
Titre: POSITIONNEMENT ET CARTOGRAPHIE

| Enseignants: Prof. Otto Kölbl SIE, Pierre-Yves Gilliéron, chargé de cours, SIE |
|------------------|------------------|------------------|------------------|
| Section (s) | Semestre | Oblig. | Option | Facult. | Heures totales: 56 |
| SIE | 5 | x | | | Par semaine: 4 |
| | | | | | Cours: 2 |
| | | | | | Exercices: 0 |
| | | | | | Pratique: 2 |

OBJECTIFS
Maîtriser les techniques de positionnement et de cartographie pour la mise à jour in-situ d’une banque de données spatiales.

Introduction à la sémiologie graphique pour produire des présentations cartographiques efficaces.

GOALS
Master the techniques of positioning as well as those of digital cartography for the on-site updating of a spatial data bank.

Introduction to the graphic semiology in order to achieve an efficient cartographic presentation.

CONTENU
- Localisation par satellites
 - mesures de code GPS et leur modélisation
 - algorithmes de calcul
 - gamme de précision et aspects logistiques
- Datums géodésiques
 - géoïde et ellipsoïdes
 - types de coordonnées et conversions
 - projections cartographiques
 - changement de datum
- Cartographie numérique
 - introduction à la sémiologie graphique
 - traduction de la sémiologie à la cartographie
 - la cartographie topographique
 - les techniques d’impression numériques et analogiques
 - la reproduction d’images
 - le tramage numérique et analogique
 - représentation du terrain et techniques avancées de traitement numérique du terrain
 - les cartes thématiques

CONTENTS
- Positioning with satellites
 - GPS code measurements and their modelisation
 - computation algorithms
 - range of precision and logistical aspects
- Geodetic datums
 - geoid and ellipsoids
 - types of coordinates and conversions
 - cartographical projections
 - datum transformations
- Digital cartography
 - introduction to graphic semiology
 - application of the semiology to cartography
 - topographic cartography
 - numerical and analogical printing techniques
 - image reproduction
 - numerical and analogical screening
 - terrain representation and advanced techniques for computation of digital terrain models
 - thematic mapping

FORME DE L'ENSEIGNEMENT:
Cours ex cathedra et exercices

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:
- SIRS II, Photogrammétrie
- Préalable requis: Campagne de terrain
- Préparation pour: Gestion foncière, Outils géomatiques

NOMBRE DE CREDITS 5

SESSION D'EXAMEN
Printemps 3e année

FORME DU CONTROLE: Examen oral
OBJECTIFS
Acquisition des compétences nécessaires à la maîtrise d’oeuvre d’un projet de développement de SIRS.

En particulier:
- Familiarisation avec les méthodes de conception de systèmes d’information et application au domaine des SIRS
- Développement des connaissances des systèmes géoinformatiques

CONTENU
• Ingénierie de l’information spatiale
 - techniques et outils avancés de modélisation de l’information géographique
 - revue critique des méthodes de conception actuelles
 - évaluation de systèmes géoinformatiques
 - impacts des SIRS sur les organisations
 - aspects légaux et économiques de la diffusion de données géographiques

• Connaissance des systèmes géoinformatiques (SIG)
 - notions avancées de structures de données spatiales et d’algorithmique
 - typologie et marché des SIG
 - échanges de données et interoperabilité des systèmes
 - exploitation et maintenance d’un SIG

• Visites de sites, démonstrations

• Projet commun de développement d’un SIRS
 Les étudiants se répartissent les tâches de développement d’un SIRS sur un thème d’actualité, avec l’appui d’un consultant ou d’une administration. Un prototypage est réalisé sur un système géoinformatique “haut de gamme”.

GOALS
Provide students with the knowledge required to manage a GIS implementation project.

Essential topics:
- Familiarization with IT implementation methodologies and applications for GIS
- Developing knowledge of GIS systems

CONTENTS
• Engineering of spatial information
 - techniques and tools used for modeling geographic information
 - critical review of current implementation methods
 - evaluation of GIS systems
 - impacts of GIS on organizations
 - legal and economic aspects of geographic data diffusion

• Knowledge of GIS
 - advanced understanding of data structures and algorithms
 - typology and market overview of GIS
 - exchange of data and system interoperability
 - use and maintenance of GIS

Visits to sites, demonstrations

Common project for implementing a GIS
The students develop a GIS for a current topic, with a consulting engineer or an administration. A high-level prototype GIS will be realized.
Titre: ECONOMIE RURALE ET D'ENTREPRISE I

Title: RURAL ECONOMY AND MANAGEMENT I

Enseignants Erwin Stucki et Olivier Roque, chargés de cours, SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSIE</td>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique</td>
</tr>
</tbody>
</table>

OBJECTIFS

Les étudiants acquièrent les notions fondamentales de l'économie d'entreprise, de la micro-économie et de l'économie régionale, dans l'optique du développement durable.

Des études de cas du secteur agro-alimentaire illustrent les notions théoriques. A travers des études de cas, les étudiants comprennent les caractéristiques et les processus économiques et politiques qui conditionnent les mutations profondes en cours du développement territorial de l'espace rural.

OBJECTIVES

The students acquire the bases of the economic reasoning. They master the fundamental notions of the firm, of micro-economics and of spatial economics in the frame of sustainable development.

Case-studies of the Food chain sector serve as examples for the theory. The students understand the economic and political characteristics, which influence the current changes in the enterprises and in spatial development.

CONTENU

- Les notions de base de l'économie d'entreprise
 - l'entreprise
 - la thèorie de la production
 - l'analyse de l'entreprise
 - la gestion de l'entreprise
- Micro économie
 - l'offre, la demande, les marchés
- Économie régionale
 - la différenciation spatiale de l'économie
 - la ruralité, le développement régional
 - les indicateurs du développement régional

CONTENTS

- Individual economy
 - the firm
 - the theory of the production
 - analysis of the firm
 - firm management
- Microeconomic approach
 - supply, demand, markets
- Regional economy
 - spatial economy
 - rurality, regional development
 - criteria and indicators of regional development

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra et exercices

Notes de cours

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

Préalable requis:

Préparation pour: Economie rurale et d'entreprise II

NOMBRE DE CREDITS 2 pour I et II

BRANCHE DE SEMESTRE Hiver 3e année

FORME DU CONTROLE: continu
6e semestre
<table>
<thead>
<tr>
<th>Titre: GEOTECHNIQUE ET FONDATIONS</th>
<th>Title: GEOTECHNICS AND FOUNDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: Mustafa Gencer, chargé de cours GC</td>
<td>Heures totales: 42</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>SIE</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
Identifier et caractériser les paramètres mécaniques des sols de fondation. Décrire les types d'ouvrages en contact avec le sol et leur mode de réalisation. Développer les théories permettant de résoudre certains problèmes types en géomécanique.

GOALS

CONTENU

Technologie des sols
Nature d'un sol; classification des sols et des roches; l'eau dans le terrain; compactage; déformabilité; résistance au cisaillement.

Géostructures
Types, définitions, nomenclature, méthodes d'exécution.
Travaux d'excavation et remblayage, murs et parois de soutènement, fondations superficielles et profondes, stabilité des pentes, mécanique des roches, action de l'eau.

CONTENTS

Fundamental of geomechanics
Nature of soils; soil and rock classification; groundwater seepage; compaction; deformability; strength.

Geostructures
Types, definitions, nomenclature, construction methods.
Excavations and embankments, retaining structures, shallow and deep foundations, slope stability, rocks mechanics, action of groundwater.

FORME DE L'ENSEIGNEMENT: cours ex-cathedra, exercices, essais en laboratoire

BIBLIOGRAPHIE: polycopié

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Géologie, résistance des matériaux
Préparation pour:

NOMBRE DE CREDITS 2

BRANCHE DE SEMESTRE
Eté

FORME DU CONTROLE
Contrôle continu:
Enseignant: Isabelle Romy, professeure associée à l'Université de Fribourg

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>6</td>
<td></td>
<td>×</td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Ce cours donne aux étudiants les connaissances de base nécessaires pour comprendre les dimensions juridiques de leur activité professionnelle en relation avec la protection de l'environnement, notamment dans les domaines des sols et des eaux. Il les sensibilise aux problèmes juridiques pratiques liés à l'exercice de leur profession.

CONTENU

- Principes généraux du droit suisse de l'environnement et aspects de droit international
- La protection des sols
- La gestion des déchets
- Les sites contaminés
- La réglementation en matière de protection des eaux
- Mise en œuvre du droit de l'environnement dans les projets de construction; coordination; mécanismes de l'étude d'impact

OBJECTIVE

This course provides the students with the basic knowledge required to understand the legal aspects of their professional life in relation with environmental protection, in particular soils and waters protection. Special emphasis is given to legal practical issues related to their profession.

CONTENTS

- Principles of Swiss environmental law and aspects of international environmental law
- Protection of soils
- Disposal of wastes
- Remediation of contaminated sites
- Regulations on water protection
- Enforcement of environmental protection law in construction projects; coordination; impact assessment study

FORME DE L’ENSEIGNEMENT: Cours interactif avec exercices

BIBLIOGRAPHIE: Polycopié; textes législatifs; cas pratiques distribués

LIAISON AVEC D’AUTRES COURS:

Préalable conseillé: Introduction au droit

Préparation pour: Modules de 4e année, Campagne d'étude d'impacts

NOMBRE DE CREDITS 2

SESSION D’EXAMEN : Été

FORME DU CONTRÔLE :

Branche de semestre

Ecrit
Titre: BIOLOGIE I
Enseignant: Chantal Seigne, chargée de cours SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>Per semaine: 2</td>
</tr>
<tr>
<td>SIE</td>
<td>6</td>
<td></td>
<td>X</td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître la définition du vivant, l'origine de la vie et les principaux groupes de micro-organismes vivants

Assimiler la structure des cellules et des organismes

Comprendre les principales voies métaboliques qui gouvernent le comportement et la reproduction des micro-organismes.

CONTENU

Introduction à la biologie
- Définition du vivant
- Interactions des organismes avec leur environnement
- Taxonomie classique

Structure et fonction cellulaire
- Microscopie
- Cellules procaryote et eucaryote

Métabolisme cellulaire
- Nutrition et types nutritionnels
- Respiration cellulaire
- Biosynthèse des intermédiaires
- Photosynthèse

Origine de la vie
- Evolution chimique, biologique et microbienne
- Taxonomie moléculaire

Principaux groupes de microorganismes
- Virus, bactéries, protozoaires, algues et mycètes

OBJECTIVES

To know the definition of life, the origin of life and the main groups of micro-organisms

To assimilate the cell and organism structure

To understand the major catabolic pathways which determine the micro-organisms behaviour and reproduction

CONTENTS

Introduction of biology
- Definition of life
- Interactions of organisms with their environment
- Classical taxonomy

Cell structure and function
- Microscopy
- Prokaryotic and eukaryotic cells

Cellular metabolism
- Nutrition and nutritional types
- Cellular respiration
- Biosynthesis of key monomers
- Photosynthesis

Origin of life
- Chemical, biological and microbiological evolution
- Molecular taxonomy

Major groups of microorganisms
- Virus, bacteria, protozoan, alga and fungi

FORME DE L'ENSEIGNEMENT: Cours ex cathedra

BIBLIOGRAPHIE: Notes de cours polycopiés et Brooks Biology of Microorganisms

LIAISON AVEC D'AUTRES COURS: Chimie biologique I

Préalable : Chimie générale

Préparation pour: Biologie II et Microbiologie et biologie des sols et des eaux

NOMBRE DE CREDITS: 5 avec Chimie biologique I

SESSION D'EXAMEN:
- Été

FORME DU CONTROLE:
- Examen écrit, combiné avec Chimie biologique I
OBJECTIFS
- connaître les différentes composantes moléculaires des cellules : leurs compositions et leurs fonctions
- apprendre les principes de l’utilisation de l’information génétique et les mécanismes d’évolution
- apprendre les différents systèmes de régulation aux niveaux génétiques et biochimiques

CONTENU
Composantes moléculaires des cellules :
polysaccharides, acides nucléiques (ADN, ARN), protéines (structure, fonctions, principales classes d’enzymes), lipides, lipoprotéines, membranes, cofacteurs et vitamines

Utilisation de l’information génétique et mécanismes d’évolution :
transcription, traduction, réplication, évolution verticale et horizontale

Régulation aux niveaux génétiques et biochimiques
régulation de l’activité enzymatique, régulation de la transcription : induction, répression, contrôle positif, contrôle globale, atténuation, transduction des signaux

OBJECTIVES
- knowing the different molecular components of biological cells: their composition and function
- understanding the principles of the use of genetic information and the different mechanisms of evolution
- understanding the basics of regulation mechanisms on enzyme and gene level

CONTENTS
Molecular cell components :
polysaccharides, nucleic acids (DNA, RNA), proteins (structure, functions, major enzyme classes), lipids, lipoproteins, membranes, cofactors, and vitamins

Use of genetic information and mechanisms of evolution :
transcription, translation, replication, vertical and horizontal evolution

Regulation on enzyme and gene level:
regulation of enzymatic activity, regulation of transcription: induction, repression, positive control, attenuation, global control, transduction of signals

FORME DE L’ENSEIGNEMENT: Cours ex cathedra
BIBLIOGRAPHIE: Notes de cours photocopied et Brocks Biology of Microorganisms
LIAISON AVEC D’AUTRES COURS:
Préalable : Chimie biologique I et Biologie I
Préparation pour: Mineur en Biotechnologie environnementale

NOMBRE DE CREDITS: 5 avec Biologie I
SESSION D’EXAMEN: Eté
FORME DU CONTROLE: Examen écrit
OBJECTIFS
Application pratique des connaissances théoriques acquises au 5ème semestre dans le domaine de l'analyse chimique.

Savoir mettre en œuvre l'analyse des micropolluants organiques dans les sédiments par les méthodes chromatographiques. Traitement et interprétation des résultats.

CONTENU
• Analyse des eaux naturelles
 - paramètres physico-chimiques
 - équipement de terrain
• Analyse des sédiments
 - polluants organiques (PCBs)
 - extraction par solvants
 - purification par colonne d'adsorption
 - identification et quantification des polluants
• Méthodes nouvelles d'extraction
 - par fluide supercritique (SFE)
 - par solvants sous pression (ASE)
• Méthodes chromatographiques de séparation
 - chromatographie gazeuse
 - chromatographie liquide
 . Indices Biotiques
• Application
 - étude de la contamination d'une rivière (analyse de l'eau et des sédiments)

FORME DE L'ENSEIGNEMENT: Travaux pratiques
BIBLIOGRAPHIE: Recueil de méthodes d'analyse
LIAISON AVEC D'AUTRES COURS:
Préalable requis: Chimie appliquée, Chimie environnementale I
Préparation pour: Gestion des milieux, Pollution des milieux

NOMBRE DE CREDITS 5 pour I et II
SESSION D'EXAMEN Été 3e année
FORME DU CONTROLE: Examen oral pour I, combiné avec rapport pour II
Cours: ECOTOXICOLOGIE

Enseignant: Dr Kristin Becker van Slooten, chargée de cours SIE

Section(s) Semestre Oblig. Option Facult. Heures totales: 28
SIE 6 X

Par semaine: 2
Cours 2
Exercices 0
Pratique 0

OBJECTIFS
Comprendre les bases du comportement et de l'impact des contaminants chimiques dans l'environnement, connaître les outils les plus importants utilisés en écotoxicologie.

OBJECTIVES
Understand the basis of the fate and the impact of chemical contaminants in the environment, knowledge of the main tools used in ecotoxicology.

CONTENU
Définition et historique de l'écotoxicologie.
Présentation de l'ordonnance sur les substances toxiques.
Comportement et devenir de polluants chimiques dans les milieux aquatiques et terrestres.
Dégradabilités physiques, chimiques et biotiques des polluants, métabolisation, biodisponibilité.
Bioaccumulation des polluants rémanents dans les chaînes trophiques.
L'utilisation des bioindicateurs et biomarqueurs.
Les tests écotoxicologiques appliqués à la prévoyance de l'impact environnemental des produits chimiques et des échantillons environnementaux.
Présentations d'études de cas.
Analyse de risque des substances.
Travaux pratiques avec deux tests écotoxicologiques, discussion et interprétation des résultats.

CONTENTS
Definition and historical aspects of ecotoxicology.
Presentation of the Swiss Ordinance on toxic substances.
Behaviour and fate of chemical pollutants in aquatic and terrestrial environment.
Physical, chemical and biotic degradation of pollutants, metabolism, bioavailability.
Bioaccumulation of persistent pollutants in food chains.
Use of bioindicators and biomarkers.
Application of ecotoxicological tests for the prevention of environmental impact of chemical products and complex environmental samples.
Presentation of case studies.
Risk assessment of substances.
Practical work with two ecotoxicity tests, discussion and interpretation of the results.

FORME DE L'ENSEIGNEMENT: Ex cathedra, travaux pratiques, exercice, discussions et études de cas.

BIBLIOGRAPHIE: Notes polycopiées

LIAISON AVEC D'AUTRES COURS: Toxicologie

Préalable: Chimie environnementale I

PREPARATION POUR:

NOMBRE DE CREDITS: 5 pour I et II

SESSION D'EXAMEN: Été

FORME DU CONTROLE: Examen écrit
HYDROLOGIE APPLIQUÉE

Enseignant : Prof. André Musy, SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 56</th>
<th>Par semaine: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>6</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC, PH</td>
<td>6</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Décrire, expliquer et appliquer les concepts, méthodes et techniques hydrologiques pour le dimensionnement des ouvrages d'aménagement et de gestion des eaux ainsi que pour mieux cerner leurs impacts sur l'environnement.

CONTENU

- Processus et comportements hydrologiques (rappel)
- Analyse pluviométrique
 - fonction de production
 - pluie de projet
- Relation pluie-débit
 - fonction de transfert
 - fonction d'acheminement
- Modélisation hydrologique
- Chapitres choisis
 - dimensionnement des ouvrages de rétention
 - analyse des crues
 - analyse des étages
 - prévision hydrologique
- Utilisation d'outils informatiques appropriés dans le domaine de l'hydrologie appliquée à l'ingénieur

OBJECTIVES

Describe, explain and apply conceptual approaches, methodologies and hydrological techniques for designing hydraulic structures and operate water resources systems accounting for environmental assessment.

CONTENTS

- Process and hydrological behaviour (reminder)
- Rainfall analysis
 - production / loss function
 - design storm
- Rainfall-runoff relationship
 - overland flow / transfer function
 - flood routing
- Hydrological modeling
- Selected chapters
 - design of floods control detention ponds
 - floods analysis
 - draught analysis
 - hydrological forecasting
- Computer application for applied engineering hydrology
 - with specific (commercial) software

FORME DE L'ENSEIGNEMENT: Cours ex cathedra et exercices

BIBLIOGRAPHIE: cours polycopié, cours virtuel sur le Web

LIAISON AVEC D'AUTRES COURS: Physique du sol II, approvisionnement et désapprovisionnement en eau, aménagements hydrauliques

Préalable : Hydrologie générale, Hydraulique et réseaux

Préparation pour: Cours mineur MS "Ingénierie des eaux, du sol et des écosystèmes", section SIE et "Eau", section GC

NOMBRE DE CREDITS: 5

SESSION D'EXAMEN:
Eté 3e année

FORME DU CONTROLE:
Examen écrit
<table>
<thead>
<tr>
<th>Titre:</th>
<th>PEDOLOGIE II</th>
<th>Title:</th>
<th>PEDOLOGY II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>vacat</td>
<td>Heures totales:</td>
<td>56</td>
</tr>
<tr>
<td>Section(s)</td>
<td></td>
<td>Par semaine:</td>
<td>4</td>
</tr>
<tr>
<td>SIE</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Option</td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Voir page Web
http://ssie.epfl.ch/plan_etude/sem3-6_04-05.php

CONTENU

<table>
<thead>
<tr>
<th>FORME DE L'ENSEIGNEMENT:</th>
<th>NOMBRE DE CREDITS</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIBLIOGRAPHIE:</td>
<td>SESSION D'EXAMEN</td>
<td>Eté 3e année</td>
</tr>
<tr>
<td>LIAISON AVEC D'AUTRES COURS:</td>
<td>FORME DU CONTROLE:</td>
<td>Examen oral</td>
</tr>
<tr>
<td>Préalable requis:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Préparation pour:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIFS

Acquérir les bases nécessaires pour traiter les problèmes de l'air qui se posent à l'ingénieur.

Apprendre à faire les mesures de paramètres clés physiques et chimiques de l'atmosphère, et la modélisation simple et complexe.

CONTENU

Travaux pratiques
- Détection et spectroscopie de l'O$_3$ par photométrie UV
- Détection du CO par IR non-dispersive
- Détection des NO$_x$ par chemiluminescence
- Analyses par chromatographie en phase gazeuse
- Hydrolyse hétérogène de N$_2$O$_5$
- Particule de suie

- Délignification de sels

Cours théoriques
- Écoulements atmosphériques et mélange turbulent
- Chimie atmosphérique et cinétique chimique
- Modèles numériques de pollution de l'air

OBJECTIVES

Acquire the knowledge engineers need to solve air quality problems.

In this course, the student learns to measure some of the basic physical and chemical properties of the atmosphere and one learns to understand and work with simple and complex atmospheric models.

CONTENTS

Laboratory experiments
- O$_3$ spectroscopy and O$_3$ detection by UV photometry
- Non-dispersive IR detection of CO
- Chemiluminescence detection of NO-NO$_2$-NO$_x$
- Gaz chromatography
- Heterogeneous hydrolysis of N$_2$O$_5$
- Soot particles
- Délignification of salts

Theory
- Atmospheric flow and turbulent mixing
- Atmospheric chemistry and chemical kinetics
- Numerical models for air pollution

FORME DE L’ENSEIGNEMENT: Cours ex cathedra et exercices

NOMBRE DE CREDITS: 5

SESSION D’EXAMEN: Été

FORME DU CONTROLE:

Examen oral combiné avec les TP
<table>
<thead>
<tr>
<th>Titre:</th>
<th>PHOTOGRAMMETRIE</th>
<th>Title:</th>
<th>PHOTOGRAMMETRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>Prof. Otto Kölbl, SIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>SIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semestre</td>
<td>Oblig.</td>
<td>Option</td>
<td>Facult.</td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Par semaine:</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cours</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercices</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pratique</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
Introduction à la saisie d’objets spatiaux au moyen de techniques photogrammétriques automatisées, sur la base d’images numériques. Un accent important est mis sur la précision et la fiabilité des procédés, leurs applications pratiques - en particulier en topométrie - et leur rendement.

CONTENUS
- Introduction aux méthodes de travail de la photogrammétrie
- Orientation des photographies aériennes sur une station de travail numérique et triangulation aérienne
- Automatisation des mesures photogrammétriques
- Dérivation automatique d'un modèle numérique de terrain à l'aide de la photogrammétrie et des scanners à laser

Procédés du traitement d'image
- Appareils / scanners / stéréorestituteurs / imprimantes / plotters
- Prises de vues / plan de vol / chambres de prises de vues / film photographique / réalisation d'un vol photogrammétrique / colorimétrie / images satellites / images numériques / radar / caméras CCD / MTF
- Applications / mensuration officielle / orthophotos numériques / statistique de la superficie / photogrammétrie architecturale

OBJECTIVES
Introduction to spatial objects survey by largely automated photogrammetric techniques on the basis of digital images. A special emphasis is given to the precision and reliability of the procedures, their practical applications - in particular in topography - and their efficiency.

CONTENTS
- Introduction to the working methods of photogrammetry
- Orientation of aerial photographs on a digital workstation and aerial triangulation
- Automation of the photogrammetric measurements
- Automatic derivation of a digital terrain model with the help of photogrammetric methods and laser scanners

Image processing
- Instruments / scanners / stereoplotters / printers / tracing tables
- Taking of images / flight planning / aerial cameras / photographic films / realization of a photogrammetric flight / colorimetry / satellite images / digital images / radar / CCD cameras / MTF
- Applications / official survey / digital orthophotos / land use statistics / architectural photogrammetry
OBJEKTIFS
Acquérir les connaissances de base sur les principales cultures végétales agricoles des zones tempérées.

Saisir les grands principes des systèmes de production des exploitations agricoles.

Connaitre les raisonnements essentiels de la fertilisation, de la protection des végétaux et de la gestion des cultures, en relation avec l'environnement.

CONTENU
- Connaissance des plantes cultivées:
 - éléments de morphologie et de physiologie
 - croissance et développement
 - classification dans le règne végétal.

- Principaux facteurs de la production et leurs interactions: sol, climat, variété, techniques culturales, nutrition, protection.

- Principales productions agricoles: céréales, plantes sarclées et industrielles, herbages, cultures fruitières, maraîchères et viticoles.

- Divers systèmes de production: conventionnel, intégré, biologique.

OBJECTIVES
To acquire basic knowledge on main agricultural husbandry from temperate zones.

To understand main principles of production systems from agricultural farms.

To know the essential concepts of fertilization, of plant protection and of crops management regarding the environment.

CONTENTS
- Knowledge of plants:
 - morphology and physiology elements
 - growth and development
 - classification in the vegetable kingdom.

- Main production factors and their interactions: soil, climate, variety, tillage, nutrition, protection.

- Main agricultural productions: cereals, root and industrial crops, grassland, fruits and vegetable growing, viticulture.

- Several production systems: conventional, integrated, organic farming.
Titre: ÉCONOMIE RURALE ET D'ENTREPRISE II

Title: RURAL ECONOMY AND MANAGEMENT II

Enseignants: Erwin Stucki et Olivier Roque, chargés de cours, SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 1</td>
</tr>
</tbody>
</table>

OBJECTIFS
Les étudiants acquièrent notions fondamentales de l'économie politique. Au cours de séminaires et d'un projet, ils mettent en œuvre leurs connaissances du raisonnement économique, en particulier aux plans de l'entreprise, de politiques publiques et du développement régional.

OBJECTIVES
The students acquire the bases of the political economy. In seminars and through a project, they put their economical knowledge into practice. They analyse firms, public policies and regional development.

CONTENU
- Approche globale de l'économie et politiques publiques
 - macro-économie, circuit économique
 - systèmes économiques
 - croissance économique
 - disparités spatiales
- Séminaires dans les domaines de la conception et de la mise en œuvre de politiques publiques : politique agricole, de l'environnement, du développement rural et régional
- Projet des étudiants : approfondissement d'un domaine spécifique (individuel ou en groupe

CONTENTS
- Global economy et public policies
 - Macroeconomic, indicators
 - Economic systems
 - Economic growth
 - Spatial disparities
- Seminars in the fields of shaping and practicing public policies: agricultural policy, environmental policy, rural and regional development policy
- Project by students: deepening a special aspects (individually or in a team)

FORME DE L'ENSEIGNEMENT: Séminaires et projet

BIBLIOGRAPHIE: Notes de cours

LIAISON AVEC D'AUTRES COURS: Agronomie

Préalable requis: Économie rurale et d'entreprise I

Préparation pour:

NOMBRE DE CREDITS 2 pour I et II

BRANCHE DE SEMESTRE Été 3e année

FORME DU CONTROLE: Projet
OBJECTIFS
Introduction aux méthodologies des études d'impact sur l'environnement (EIE).
Connaître et utiliser les méthodologies/outils appropriés à chaque étape de l'étude d'impact.
Réaliser une étude d'impact d'un écopôle en atelier : conception et définition du programme de l'écopôle, choix du site, choix des mesures environnementales, identification, évaluation et comparaison des impacts sur l'environnement.

CONTENU
- Méthodologie générale des études d'impact
- Outils de génération de stratégies
- Outils de prospective et de prévisions
- Dynamique des systèmes
- Choix environnemental des technologies
- Planification écologique d'une région
- Choix environnemental d'un site
- Outils d'identification des impacts
- Outils de prévisions des impacts
- Outils d'évaluation des variantes

Études de cas : traversée de la Rade à Genève, prévisions de trafic aérien à l'AIG, filières d'élimination des déchets, tri des déchets à la source Jongny, McHarg Staten Island, EES des domaines skiables Alpes du nord, zonage environnemental aux Pays-Bas, recherche d'un site décharge bioactive VD, site de ski artistique Sion 2006, STEP d'Aire, gravière de Grenilles (Fribourg), eutrophisation du lac de Joux.

OBJECTIVES
Introduction to environmental impact assessment (EIA) methodologies.
Knowing and using the appropriate methodologies and tools for each step of the EIA.
Workshop : Making an EIA for an industrial ecopark : designing and programming of the ecopark, site analysis and choice, definition of mitigation measures, environmental impact identification, evaluation and comparison.

CONTENTS
- General methodology
- Tools for strategy generation and programming
- Tools for environmental forecasting
- System dynamics
- Environmental Technology Assessment
- Ecological Regional Planning
- Environmental Site Analysis
- Tools for impact identification
- Tools for impact assessment
- Tools for alternatives assessment

FORME DE L'ENSEIGNEMENT: Cours ex cathédra et exercices (ateliers par groupes de 2 à 3 étudiants)

BIBLIOGRAPHIE: Polycopié
http://www.ecoscan.ch/ecoscan/610/CoursEIE.html

liaison avec d'autres cours:
Préalable : Droit de l'environnement
Préparation pour: Module « Aménagement de l'espace », Campagne d'étude d'impacts

NOMBRE DE CREDITS: 2

BRANCHE DE SEMESTRE:
Été 3e année

FORME DU CONTROLE:
Note sur le rapport final de l'atelier
7e semestre
Titre: ECOLOGIE DES ECOSYSTEMES ET DU PAYSAGE
Title: ECOSYSTEM AND LANDSCAPE ECOLOGY

Enseignant: Prof. Alexandre Buttler, SIE,
Ion Iorgulescu, François Gillet, chargés de cours SIE ; Hélène Wagner, WSL

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cours</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exercices</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pratique</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Approfondissement des connaissances en écologie quantitative
Intégration de l’échelle paysagère dans l’analyse des écosystèmes
Analyse des dimensions spatiales et temporelles, et relations avec les activités humaines
Bases théoriques de l’utilisation durable des ressources biologiques
Acquisition des méthodes d’analyses et connaissance des outils nécessaires aux travaux de l’ingénieur, du gestionnaire de milieux naturels et du chercheur scientifique.

CONTENU
Ecologie des populations, des peuplements et des biocénoses : ressources et consommateurs, métapopulation, théorie de la compétition, prédation.
Surveillance d’un système écologique.
Ecologie du paysage : le paysage en tant qu’éco-complexe, dynamique du paysage.
Ecologie des systèmes : introduction à l’approche systémique en écologie, bases théoriques de l’exploitation durable des ressources biologiques non renouvelables et considération bio-économiques, incertitude et principes de précaution dans la gestion écosystémique.

OBJECTIVES
In-depth knowledge in quantitative ecology
Integration of the landscape scale in the analysis of ecosystems
Analysis of spatial and temporal scales, and relation to human activities
Theoretical basis for sustainable use of biological resources
Getting the analytical methods and tools necessary to the activities of engineers, managers of natural systems and scientific researchers.

CONTENTS
Population and community ecology: resources and consumers, metapopulation, competition theory, predation.
Survey and monitoring of ecological systems.
Landscape ecology: ecocomplex and landscape dynamics.
System’s ecology: introduction to the systemic approach in ecology, theoretical basis for sustainable use of biological non renewable resources and bio-economic considerations, uncertainties and principles of precaution in ecosystemic management.

FORME DE L’ENSEIGNEMENT:

LIAISON AVEC D'AUTRES COURS:
Préalable requis: Ecologie générale et biodiversité (1er semestre SIE)
Conseillé: Analyses spatiales (5ème semestre SIE)

Préparation pour:

NOMBRE DE CREDITS : 3

SESSION D'EXAMEN : Printemps
Contrôle continu

FORME DU CONTROLE:
Ecrit, 2 heures
OBJECTIFS

Les objectifs du cours sont 1) d'apprendre les principes et méthodes de base pour le design de modèles environnementaux complexes, et 2) de développer les capacités à construire et programmer et/ou interpréter un modèle destiné à étudier et résoudre des questions environnementales. Les exemples seront pris dans diverses domaines des sciences environnementales, comme l'hydrologie, la pollution de l'air, l'écologie ou l'ingénierie environnemental.

OBJECTIVES

The purpose of the course is 1) to learn basic modeling skills and principles useful in solving complex environmental problems and 2) to develop the ability to construct and program, and/or interpret a model to help solve an environmental problem. The examples will be taken from various environmental sciences including hydrology, air pollution, ecology, engineering, etc.

CONTENU

La classe sera composée de trois modules :

1. Description des principes et concepts de la modélisation
2. Description des outils de programmation
3. Applications à différents problèmes environnementaux

Un certain nombre de semaines seront également réservées pour la présentation des projets de semestre par les étudiants.

CONTENTS

The course will be broken into the following three modules :

1. Description of modeling principles and concepts
2. Description of programming tools
3. Applications to different environmental problems

A number of weeks will be also dedicated to the presentation of semester projects by the students.

FORME DE L'ENSEIGNEMENT: Cours ex cathedra et exercices in the PC lab

BIBLIOGRAPHIE: to be determined

LIAISON AVEC D'AUTRES COURS: Introduction à la modélisation

Préalable :

Préparation pour:

NOMBRE DE CREDITS: 3

SESSION D'EXAMEN: Pintemps
Contrôle continu

FORME DU CONTROLE: Homeworks and Semester project (i.e., project proposal, project paper, and project presentation)
OBJECTIFS

Voir page Web

http://ssie.epfl.ch/plan_etude/sem3-6_05-05.php

CONTENU

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

Préalable :
Préparation pour:

NOMBRE DE CREDITS: 3

SESSION D'EXAMEN: Printemps
contrôle continu

FORME DU CONTROLE:
OBJECTIFS

Le principal objectif pour les étudiants est d’être capable de comprendre et d’appliquer quelques méthodes importantes de statistique focalisées sur des problèmes environnementaux. Les exemples comprendront des applications d’hydrologie (p.ex. débit de rivières, précipitations), de science atmosphérique (p.ex. turbulence) et de science du sol (p.ex. techniques spatiales).

CONTENU

Les sujets abordés traiteront de :

- Rappel sur la description statistique des données et de probabilité
- Analyse de séries temporelles
- Analyse spectrale
- Valeurs extrêmes
- Estimation des paramètres
- Modèle de régression
- Communication des risques
- Statistiques spatiales
- Echantillonnage conditionnel
- Ondulettes
- Calcul statistique avec R

OBJECTIVES

The overall objective is that the students will understand and be able to apply some important statistical methods with a focus on environmental problems. Examples will include applications from hydrology (e.g. river discharge, precipitation), atmospheric science (e.g. turbulence) and soil science (e.g. spatial techniques.)

CONTENTS

Topics covered will include:

- Review of statistical description of data and probability
- Time series analysis
- Spectral analysis
- Extreme values
- Parameter estimation
- Regression models
- Risk communication
- Spatial Statistics
- Conditional sampling
- Wavelets
- Statistical computing with R

FORME DE L’ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D’AUTRES COURS:

Préalable :

Préparation pour:

NOMBRE DE CREDITS: 3

SESSION D’EXAMEN: Printemps contrôle continu

FORME DU CONTROLE:
<table>
<thead>
<tr>
<th>Titre:</th>
<th>THEORIE DU TERRITOIRE I</th>
<th>Title:</th>
<th>TERRITORY THEORY I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignants:</td>
<td>Martin Schuler et Jacques Macquat, chargés de cours AR</td>
<td>Faculté:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. François Golay, SIE, Prof. Jacques Lévy, AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
<td>Oblig.</td>
<td>Option</td>
</tr>
<tr>
<td>SIE, AR</td>
<td>7</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Une bonne connaissance des processus d'organisation du territoire de même que des politiques qui régissent ce dernier - l'aménagement du territoire et d'autres politiques ayant un impact sur le territoire est indispensable aux architectes et aux ingénieurs, futurs projeteurs de réalisations architecturales, urbaines et rurales.

Le cours a pour but de donner une introduction à cette problématique complexe qui fait référence aux théories du développement, de l'organisation spatiale, des processus de régionalisation ainsi qu'à des notions urbanistiques, techniques et juridiques.

Les méthodes d'analyse territoriale telles que les enquêtes, le traitement statistique, la cartographie et les systèmes d'information géographique (GIS) font partie du cours.

CONTENU

Présentation des buts et principes de l'aménagement du territoire et des autres politiques territoriales aux différentes échelles allant du local au niveau européen, de leur histoire, des processus modifiant l'organisation du territoire (régularités territoriales), des méthodes, techniques et instruments, des acteurs et des compétences. Les systèmes d'information géographique sont présentés à la fois en tant que support à l'analyse et outils d'aide à la décision politique.

Traitemt d'autres politiques à impacts territoriaux, des transports aux politiques sociales en intégrant le rôle du fédéralisme. Analyse des représentations de la population par l'interprétation des cartes de votations. Discussions des conceptions territoriales et analyses de problématiques telles que la densité et la mixité, la régionalisation, le développement durable, les réseaux urbains, le paysage et la prospective territoriale.

OBJECTIVES

This course aims at providing architects and engineers, the designers of future rural, urban and architectural projects, the up to date and indispensable knowledge about territorial organization processes and politics, land planning and also the other politics into play in territorial questions.

Our Territory Theory course introduces students to this complex issue which involves: development theories; spatial organization theory; regional processes and also urban, technical and law regulations.

Several territorial analysis methodologies belong to this course, in particular: inquiries; statistics; cartography and GIS (geographical information systems).

CONTENTS

Land planning goals and principles; territorial politics at various scales, from the local to the European; territorial politics history; processes influencing territorial organization such as regularities; methodologies, technologies and tools; actors and competences. Presentation of GIS: their contribution to analysis and their potential as tools used for political decisions.

Presentation of other territorial oriented politics, from transportation to social concerns including the role of federalism. The interpretation of votes maps will provide us with an analysis of population representations. We will discuss territorial conceptions and analyse stakes such as density, mixity, regional processes, sustainability, urban networks, landscape and the field of territorial innovation: scenarios.

FORME DE L'ENSEIGNEMENT: ex cathedra, parfois travaux

BIBLIOGRAPHIE: distribué au début du cours

LIAISON AVEC D'AUTRES COURS: si possible, UEC ; fait partie du mineur en développement territorial (cf. ce programme)

Préalable : Pas de préalable

Préparation pour: Cours obl. ; cours de base pour le mineur en DT

NOMBRE DE CREDITS: 3 pour I et II

SESSION D'EXAMEN: Été

Contrôle continu

FORME DU CONTROLE:

Eamen écrit
Mineurs : 1. Gestion de la pollution et écologie industrielle
2. Biotechnologies environnementales

Cours: TRAITEMENTS THERMIQUES DES DECHETS INDUSTRIELS : Techniques d’épuration des fumées

Lecture: THERMAL TREATMENT OF INDUSTRIAL WASTE: Smokestacks clean up’s techniks

Enseignant: Prof. Hubert van den Bergh, SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>7</td>
<td></td>
<td></td>
<td>x</td>
<td>Par semaine: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Apprendre et comprendre les méthodes et bases du traitement des déchets industriels et épuration des fumées. Des exemples illustrent le cours. Polluants contenus dans les fumées:
CO, particules, HCl, HF, Sox, Nox, As, Ca, Hg, Ni, Pb, dioxines, COV, composés bromés et iodés.

OBJECTIVES
Learn and understand the methods and fundamentals of the treatment of industrial waste and smokestacks cleanup. Examples of modern waste treatment are given. Pollutants in smokestacks:
CO, particles, HCl, HF, Sox, Nox, As, Ca, Hg, Ni, Pb, dioxines, VOC's, bromides and iodides.

CONTENU
- Pyrolyse à basse, moyenne et haute température
- Procédés d’oxydation humide
- Vapocraquage
- Traitements par bains
- Traitements par micro-ondes
- Dépoussiérage
- Epuration par voie sèche
- Epuration par voie semi-humide
- Epuration par voie humide
- Epuration par voie combinée
- Epuration par condensation
- Réduction non catalytique + réduction catalytique
- Re-combustion
- Adsorption
- Traitement des COV

CONTENTS
- Pyrolysis at low, medium and high temperature
- Wet oxidation processes
- Cracking
- Immersion treatments
- Microwave treatments
- Particle filtration
- Dry purification
- Semi-wet purification
- Wet purification
- Combined purification
- Condensation
- Catalytic + non-catalytic reduction
- Re-combustion
- Adsorption
- Treatment of VOC's

FORME DE L'ENSEIGNEMENT: Cours ex cathedra

BIBLIOGRAPHIE: Polycopiés

liaison avec d'autres cours:
Préalable: Chimie appliquée, météorologie, atmosphère et climat, photochimie atmosphérique

NOMBRE DE CREDITS: 5 pour I et II

SESSION D'EXAMEN: Printemps
Contrôle continu

FORME DU CONTROLE: Examen oral
OBJECTIFS
Comprendre les principes de base qui régulent les processus chimiques, physiques et biologiques qui participent à la dissémination, des polluants organiques et métalliques émis dans l'environnement, ainsi qu'à l'exposition humaine et aux écosystèmes.
Apprendre à analyser des émissions dans l'environnement à l'aide d'un modèle multimédia de devenir et exposition.

CONTENU
Sources et Comportement des polluants dans l'environnement
Les principaux polluants chimiques
Sources de pollution
Comportement des polluants
Processus de base : dégradation, transport intra- et inter-media, Bioaccumulation

Transport des polluants dans l'environnement
Modélisation de la distribution dans l'environnement (bilan de masse)
Modéliser les transports inter- et intra-media
Estimer les coefficients de dégradation
Bilan de masse à l'aide du calcul matriciel

Exposition humaine aux polluants
Fraction ingérée (fraction d'une émission qui atteigne une population)
Voies d'exposition aux polluants émis dans l'environnement
Modélisation de la contamination environnementale à l'ingestion
- Exposition d'une population versus exposition individuelle
- Screening versus analyse comparative
- Exposition directe à travers le medium contaminé
- Exposition indirecte et bioaccumulation dans la nourriture
Exercices avec un modèle multimédia de devenir et exposition de polluants dans l'environnement

OBJECTIVES
To understand basic principles of the chemical, physical, and biological processes that contribute to the fate of organic contaminants and heavy metals emitted in the environment and the exposure of humans and ecosystems.
Learn to assess environmental emissions with a multimedia chemical fate and exposure model.

CONTENTS
Environmental behaviour of chemicals and sources
Description of the principal chemical contaminants
Origin of contaminants
Behaviour in the environment
Basic processes: degradation, intra- and inter-media transport, Bioaccumulation

Transport of contaminants within and between
Environmental media
Modelling the distribution of mass in the environment
Inter- and intra-media transport rate modelling
Degradation rate coefficient estimation
Matrix mass balance calculations

Human Exposure to contaminants
Intake fraction (the fraction of a release that is taken in by a population)
Human exposure pathways to environmental contaminants
Modeling from environmental contamination to intake
- population based versus individual intake
- screening versus comparative assessments
- direct intake of contaminated medium
- indirect intake and bioaccumulation into food
Exercise with a multimedia fate & exposure models to assess environmental contaminants

FORME DE L'ENSEIGNEMENT: Cours et exercices

BIBLIOGRAPHIE: Polycopiés (basé sur transparents de cours plus références bibliographiques, souvent en anglais)

LIAISON AVEC D'AUTRES COURS: Tous les cours du module « Impacts et risques environnementaux »

Préalable: Chimie environnementale I et II

Préparation pour:

NOMBRE DE CREDITS: 3

SESSION D'EXAMEN: Printemps

FORME DU CONTROLE: Examen oral
<table>
<thead>
<tr>
<th>Titre: GENIE ET MODELISATION DES BIOPROCEDES DE L'ENVIRONNEMENT I</th>
<th>Title: ENGINEERING AND MODELLING OF ENVIRONMENTAL BIOPROCESSES I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignants: Prof. Paul Péringuey, SIE, Msc. Marc Deront, chargé de cours SIE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>7</td>
<td></td>
<td>x</td>
<td></td>
<td>Par semaine: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Savoir dimensionner les biosystèmes microbiens appliqués aux traitements biologiques des effluents et des déchets.
Acquérir les méthodes de mesure et de régulation indispensables au suivi et au contrôle informatisé des bioprocédures de l'environnement.
Concevoir et appliquer des modèles mathématiques à la simulation et à la conduite optimale des bioprocédures de l'environnement.

CONTENU
Biosystèmes continus homogènes
Paramètres du procédé et estimation des variables d'état.
Biosystème continu avec recyclage de biomasse ou d'effluent.
Application au traitement des eaux usées par boues activées.
Biosystèmes continus hétérogènes
Réacteurs pistons, batch séquentiel et réacteurs à membrane.
Lits bactériens, disques et filtres biologiques.
Évaluation et comparaison des performances.
Exemples d'application au traitement des eaux usées et à la digestion anaérobie des matières organiques.

Mesures et contrôle des bioprocédures
Principes et techniques de mesure. Boucles de régulation.
Régulateurs et automates programmables.
Modélisation des bioprocédures de l'environnement. Principes de modélisation. Types et structures de modèle.
Établissement des modèles conceptuel et mathématique.
Identification des paramètres et étude de sensibilité.
Choix et application du logiciels de simulation.
Modèle mathématique avancé des boues actives.
Modèle mathématique avancé de la digestion anaérobie.

OBJECTIVES
Be able to design microbial biosystems applied to the biological treatment of effluents and wastes.

Acquire the measurement and control techniques which are necessary for the follow-up and for the computer control of environmental bioprocesses.
Comprehend and apply mathematical models for the simulation, design and optimal control of environmental bioprocesses.

CONTENTS
Continuous homogeneous biosystems
Chemosat theory. Material balances. Steady state.
Process parameters and state variables estimation.
Quantitative study of the chemostat. Influence of the dilution rate.
Continuous biosystem with biomass or effluent recycling.
Application to activated sludge wastewater treatment.

Continuous heterogeneous biosystems
Plug-flow, sequencing batch and membrane bioreactors.
Trickling filters, biofilters and biological contactors.
Efficiency evaluation and comparison.
Application examples for wastewater treatment and the anaerobic digestion of organic wastes.

Measurement and control of bioprocesses
Principles and techniques of measurement. Control loops.
Regulators and programmable robots.

Modelling of environmental bioprocesses
Modelling principles. Model types and structures.
Establishment of the conceptual and mathematical models.
Parameters identification and sensitivity study.
Choice and application of the simulation software.
Advanced mathematical model for activated sludge.
Advanced mathematical model for anaerobic digestion.

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE: Notes de cours photocopiées et documents web

LIAISON AVEC D'AUTRES COURS:

Préalable : Génie des procédés

Préparation pour: Mineur en Biotechnologie environnementale

POUR L'ENSEMBLE DU MODULE:

NOMBRE DE CREDITS: 3

SESSION D'EXAMEN: Printemps

FORME DU CONTROLE: Examen écrit
<table>
<thead>
<tr>
<th>Titre:</th>
<th>REMEDIATION DES SOUS ET DES NAPPEES I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignants:</td>
<td>Prof. Christof Holliger, SIE, Eric Säuberli, Dr Jean-Paul Schwitzguebel, chargés de cours SIE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours:</th>
<th>Exercices:</th>
<th>Pratique:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>7</td>
<td></td>
<td>X</td>
<td></td>
<td>56</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS
- comprendre et savoir appliquer les différentes techniques physico-chimiques, chimiques et biologiques pour la remédiation des sols et des nappes
- connaître la démarche globale pour la sélection et la mise en œuvre d’une technique de traitement
- pouvoir définir une stratégie d’intervention pour une solution effective des problèmes

CONTENU

Techniques de remédiation
- méthodes physiques par évacuation
- méthodes physiques par piégeages
- méthodes chimiques
- méthodes thermiques
- méthodes biologiques

Le choix d’une filière de décontamination
- critères techniques
- critères économiques
- le diagnostic environnemental

Evaluation du procédé de traitement
- vérification au laboratoire
- vérification du potentiel sur site
- analyse quantitative et qualitatives sur site

Législation en ce qui concerne les sites contaminés

OBJECTIVES
- understand and being able to apply the different physico-chemical, chemical, and biological techniques to remEDIATE soils and aquifers
- knowing the global approach for the selection and application of a treatment process
- being able to define an intervention strategy for an effective solution

CONTENTS

Remediation techniques
- physical methods by evacuation
- physical methods by trapping
- chemical methods
- thermal methods
- biological methods

Choice of a decontamination process
- technical criteria
- economical criteria
- environmental diagnosis

Evaluation of the treatment process
- laboratory studies
- pilot-scale tests on site
- quantitative and qualitative analysis on site

Legal aspects concerning contaminated sites
OBJECTIFS
Assimiler les principes de la (bio)ingénierie appliquées aux traitements des eaux usées.

Acquérir les méthodes et techniques applicables à l’élimination des polluants organiques et des nutriments (azote et phosphore) des eaux usées.

Concevoir et dimensionner les ouvrages d’une station d’épuration et les biosystèmes épuratifs à boues activées.

CONTENU
Les eaux résiduaires urbaines
Caractéristiques, composition, variabilité, paramètres, normes.

Principes de traitement de la pollution organique
Structure, biologie, maladies et décanalité des bioflocs. Boues activées, lagunes, étangs et chenaux d’oxydation.

stations d’épuration à boues activées

Systèmes de traitement à biomasse immobilisée
Formation, croissance et caractéristiques des biofilms. Transfert de masse, diffusion, gradients de concentration. Technologie des lits bactériens, disques et filtres biologiques.

Méthodes de dimensionnement et d’exploitation des ouvrages.
Systèmes de traitement pour des petites collectivités

Les différentes techniques de traitement

Les critères de choix pour un système de traitement

Elimination des nutriments
Les processus de l’élimination biologiques et chimiques de l’azote et du phosphore

Les installations pour l’élimination de l’azote et du phosphore

Visites techniques de systèmes d’épuration

OBJECTIVES
Understanding the basic (bio)engineering principles for municipal wastewater treatment.

Acquisition of methods and techniques for organic pollutants and nutrients (nitrogen and phosphorous) removal from wastewater.

Conception and design of wastewater plant facilities and of activated sludge biological treatment systems.

CONTENTS
Municipal wastewater
Characteristics, composition, variability, parameters, norms.

Principles of organic pollutants removal
Structure, biology, bulking and settling capacity of bioflocs. Activated sludge, lagoons, oxidation ponds and ditches.

Activated sludge wastewater treatment plants

Immobiled biomass treatment systems

Treatment Systems for small communities
The different treatment processes

The criteria of choice for a certain treatment process

Elimination of nutrients
The microbial and chemical processes for the removal of nitrogen and phosphorus from wastewater

The different installations for the removal of nitrogen and phosphorus

Technical visits of wastewater treatment plants
<table>
<thead>
<tr>
<th>Titre:</th>
<th>BIO-INGENIERIE DES COURS D'EAU ET DES SYSTEMES NATURELS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td>BIO-ENGINEERING OF RIVERS AND NATURAL SYSTEMS I</td>
</tr>
<tr>
<td>Enseignant:</td>
<td>Jean-Louis Boillat, chargé de cours GC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>7</td>
<td></td>
<td></td>
<td>X</td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Introduction à la problématique des corrections de cours d'eau. Enjeux et défis.

Acquisition des connaissances de base nécessaires à la compréhension et à la quantification des comportements morphologiques et dynamiques des cours d'eau naturels.

CONTENU

- **Les corrections de cours d'eau**
 - Buts poursuivis et exemples historiques
 - Stratégie et méthodes
 - Les nouveaux défis

- **Classification des cours d'eau naturels**
 - Cours d'eau naturels et corrigés
 - Rivières et torrents
 - Régimes saisonniers, crues et étiages
 - Erosion et alluvionnement

- **La dynamique des cours d'eau**
 - Écoulements transitoires et transport solide
 - La dynamique alluviale
 - Espace vital et réseaux naturels

- **Formes du lit et résistance à l'écoulement**
 - Les formes dynamiques du lit
 - Morphologies verticales et horizontales
 - Résistance du lit et des rives

- **Régimes morphologiques naturels**
 - Théorie du régime (largeur, pente, profondeur)
 - Méandres et lits en tresse
 - Elargissements locaux

OBJECTIVES

Introduction to the river correction problematics. Advantage and challenge.

Basic knowledge acquisition useful for a good understanding and quantification of morphological and dynamic behavior of natural rivers.

CONTENTS

- **River corrections**
 - Goals and historical examples
 - Strategy and methods
 - New challenges

- **Classification of natural rivers**
 - Natural and corrected rivers
 - Rivers and torrents
 - Seasonal regimes, floods and low flows
 - Degradation and aggradations

- **Rivers dynamics**
 - Unsteady flows and sediment transport
 - Alluvial dynamics
 - Vital space and natural networks

- **Bed forms and resistance to flow**
 - Dynamic bed forms
 - Vertical and horizontal morphology
 - Bed and bank resistance

- **Natural morphological regimes**
 - Regime channels (width, slope, depth)
 - Meandering and braiding
 - Local widening

FORME DE L’ENSEIGNEMENT: Cours ex cathedra et exercices

BIBLIOGRAPHIE: Polycopié + autres supports de cours

LIAISON AVEC D'AUTRES COURS:
Bio-ingénierie des cours d'eau et des systèmes naturels II

Préalable : Hydrologie appliquée, Mécanique des fluides I, II

Préparation pour: Bio-ingénierie des cours d'eau et des systèmes naturels II

NOMBRE DE CREDITS: 2
(ou 5 pour I et II)

SESSION D’EXAMEN: Eté, Contrôle continu

FORME DU CONTROLE:
Examen oral

Bio-engineering of rivers and natural systems II
OBJECTIFS

- Connaissance des principes de la gestion écosystémique des ressources et du maintien de la qualité des systèmes naturels et semi-naturels (développement durable).
- Connaissance du contexte législatif et des bases légales (protection, mesures incitatives, subventions, conventions).
- Introduction aux méthodes de gestion et de production des milieux (agronomie et foresterie).
- Introduction aux principaux mécanismes de dégradation anthropique des écosystèmes et des sols.
- Introduction aux méthodes de préservation, d’entretien, de restauration, de revitalisation et de régénération des milieux (gestion et génie écologique).
- Sensibilisation aux problèmes de la protection de la nature et du paysage, et des risques naturels.

CONTENU

1. Evaluation de la qualité d’un système écologique et gestion écosystémique.
2. Bases légales nationales et internationales de la protection de la nature, des sols et de la biodiversité.
5. Gestion des marais et sols tourbeux, dégradation des sols organiques.

OBJECTIVES

- Knowledge on principles of ecosystemic management of resources and maintenance of the quality of natural and semi-natural systems (sustainable development).
- Knowledge on the legal framework (protection, incitation measures, subsidies, conventions).
- Introduction to the methods of management and production (agronomy and forestry).
- Introduction to the mechanisms of human induced degradation of ecosystems and soils.
- Introduction to the methods of preservation, maintenance, restoration, revitalisation and regeneration (management and ecological engineering).
- Attract attention on problems of nature and landscape conservation, and natural risks.

CONTENTS

1. Assessment of the quality of ecological systems and ecosystemic management.
2. National and international legal bases for nature protection, soil and biodiversity conservation.
3. Forest management and multi-functionality, biogeochemical cycles.
6. Management of floodplains, nitrogen pollution control.

FORME DE L’ENSEIGNEMENT: Cours théoriques et visites de terrain avec praticiens

BIBLIOGRAPHIE:

LIASION AVEC D’AUTRES COURS:

Préalable :
- Requis : Fonctionnement des écosystèmes (4ème sem. SIE), Pédoïologie I et II (4ème et 6ème sem. SIE)
- Conseillés : Bio-ingénierie des cours d’eau et des systèmes naturels (7-8ème sem. SIE), Législation environnementale (5ème sem. SIE)

Préparation pour:

NOMBRE DE CREDITS: 4 pour I et II

SESSION D’EXAMEN: Été, contrôle continu

FORME DU CONTROLE:
Examen oral, 30 minutes
OBJECTIFS
Introduction aux concepts et aux techniques de gestion des eaux de surface en milieu urbanisé.
Stratégies de gestion, principe de dimensionnement et de diagnostic

OBJECTIVES
Conceptual approaches for water resources management in urban areas.
Management strategies, practices for design and diagnosis

CONTENU

- **Urbanisation et effets sur l’hydrologie**
 - Régime des débits et qualité des eaux de pluie

- **Stratégies de gestion des débits d’eau pluviale**
 - Réseaux d’assainissement
 - Techniques d’assainissement alternatives
 - Gestion en temps réel des réseaux
 - Réutilisation des eaux de pluie
 - Risque pluvial majeur et système dual
 - Maîtrise de la pollution par temps de pluie

- **Dimensionnement et diagnostic des ouvrages**
 - Pluies de projet pour le milieu urbain
 - Estimation des débits d’eau pluviale
 - Estimation des flux polluants
 - Approches simplifiées et modèles détaillés

- **Bases légales et instruments de planification**
 - Plan Général et Régional d’Evacuation des eaux (PGEE/PREE)

CONTENTS

- **Impacts of urbanization on the water cycle**
 - Discharge regimes and stormwater quality

- **Stormwater runoff management strategies**
 - Urban drainage systems
 - Best management practices
 - Real-time control
 - Rainwater reuse
 - Flood risk and dual drainage system
 - Stormwater quality control

- **Design and diagnosis of waterworks**
 - Design rainfall for urban areas
 - Stormwater runoff assessment
 - Stormwater pollutants flows assessment
 - Simple approaches and sophisticated models

- **Water resources management tools**
 - « Plan Général et Régional d’Evacuation des eaux » (PGEE/PREE)

FORME DE L’ENSEIGNEMENT: Cours ex cathedra et exercices

BIBLIOGRAPHIE: Polycopié + autres supports de cours

LIAISON AVEC D’AUTRES COURS:
Hydrologie et Hydraulique des systèmes urbanisés II

Préalable : Hydrologie appliquée, Mécanique des fluides I, II
Hydraulique des ouvrages

Préparation pour:

NOMBRE DE CREDITS: 6 pour I et II

SESSION D’EXAMEN: Été
Contrôle continu

FORME DU CONTROLE:
Examen écrit
Cours: **GEODESIE I**
Lecture: **GEODESY I**

Enseignant: Hubert Dupraz et Laurent Huguenin, chargés de cours SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE, GC</td>
<td>7</td>
<td></td>
<td>x</td>
<td></td>
<td>Par semaine: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Appliquer les concepts du calcul de compensation aux réseaux topométriques.
Maitriser la propagation de la précision et le concept mathématique de fiabilité, ainsi que leur incidence sur la conception d'un dispositif de mesure.
Elargir le cadre des méthodes d'estimation pour résoudre des problèmes complexes.

CONTENU

- **Calcul de compensation en topométrie**
 - équations paramétriques de directions et de distances
 - compensation d'un point de triangulation
 - types d'erreurs et possibilités de réduire leur influence

- **Les indicateurs de précision et de fiabilité**
 - intervalle et ellipsoïde de confiance (à 2, 3 et n dimensions)
 - parts de redondance
 - fiabilité interne et externe

- **Réseaux topométriques**
 - conception, compensation et analyse
 - réseaux libres, défauts de rang (datum et/ou configuration)
 - pseudo-inverses, valeurs et vecteurs propres
 - préanalyse et optimisation
 - compensation robuste
 - incidence des nouvelles technologies
 - exemples traités avec le programme LTOP

- **Problèmes combinés**
 - conditions avec paramètres (Gauss-Helmert)
 - décomposition en étapes condit. et param.
 - cas particuliers: conditions, équations paramétriques, contraintes
 - décomposition en étapes param. et condit.

OBJECTIVES

To apply the concepts of adjustment calculus to geodetic networks.
To master the propagation of the precision and the mathematical concept of reliability, as well as their impact on the design of a measurement scheme.
To widen the scope of the estimation methods in order to resolve sophisticated problems.

CONTENTS

- **Adjustment calculus in geodetic engineering**
 - parametric equations for directions and distances
 - adjustment of a triangulation point
 - types of errors and ways to reduce their influence

- **Indicators of precision and reliability**
 - confidence interval and ellipsoid (with 2, 3 and n dimensions)
 - redundancy numbers
 - internal and external reliability

- **Geodetic networks**
 - design, adjustment and analysis
 - free networks, rank defect (datum and/or configuration)
 - pseudo-inverses, eigenvalues and eigenvectors
 - pre-analysis and optimisation
 - robust adjustment
 - impact of new technologies
 - examples handled with the LTOP software package

- **Combined problems**
 - conditions with parameters (combined case)
 - decomposition into condit. and param. steps
 - special cases: conditions, parametric equations, constraints
 - decomposition into param. and condit. steps

FORME DE L'ENSEIGNEMENT: Cours ex cathedra et exercices
BIBLIOGRAPHIE: Polycopiés, recueil d'exercices corrigés, mode d'emploi de logiciels
LIAISON AVEC D'AUTRES COURS: Analyse d'images
Préadable: Calcul de compensation, Statistique I et II, Positionnement et cartographie
Préparation pour: travaux d'infrastructure, brevet fédéral d'ingénieur géomètre

NOMBRE DE CREDITS: 6 pour I et II
SESSION D'EXAMEN: Été
Contrôle continu
FORME DU CONTROLE: Exercices, examen oral
Mineur : 4. Géomatique

<table>
<thead>
<tr>
<th>Titre: TECHNOLOGIE DES SIG I</th>
<th>Title: GIS TECHNOLOGY I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignants: Marc Riedo, Abram Pointet, chargés de cours SIE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>7</td>
<td></td>
<td>X</td>
<td></td>
<td>98</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 0</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaitre les caractéristiques et développer une maîtrise avancée des différentes technologies des SIG (typologie, design, architecture, paramétrisation, développement, algorithmes, évolution)

Etre capable de sélectionner, concevoir et mettre en œuvre les solutions adaptées à un cas ou domaine d’applications. Connaître les acteurs et le marché des technologies SIG.

OBJECTIVES

To know the characteristics and to develop a deep knowledge of various GIS technologies (GIS typology, design, architecture, customization, development, algorithms, evolution)

To be able to select, design and implement suitable GIS technologies for various applications.

Understand the GIS market and know the key GIS actors.

CONTENU

Les acteurs et le marché des TIG, les domaines clés
Les bases de données géographiques
Typologie et connaissance des technologies SIG
Architecture des solutions SIG
Interopérabilité, échanges et stockage des données
Développement d’applications SIG
Les algorithmes géographiques

CONTENTS

The GIS market and actors
The geographic databases
Typology and understanding of GIS technologies
GIS software architecture
Interoperability, data exchange and data storage mechanisms
Building GIS applications
Understanding GIS algorithms

FORME DE L’ENSEIGNEMENT: Cours ex cathedra, exercices, projet, séminaires

BIBLIOGRAPHIE: [Laurini R] Les bases de données en géomatique

LIAISON AVEC D’AUTRES COURS: cours SIG du mineur géomatique

FORME DU CONTROLE: Examen oral

NOMBRE DE CREDITS: 6 pour I et II

SESSION D’EXAMEN: Été

Contrôle continu

Préalable : Infrastructure de données géographiques
OBJECTIFS
Le cours introduit à la prise de vue numérique, y inclut les caméras amateur, et traite par la suite les prises de vues aériennes et satellites. Sont aussi pris en considération les altimètres à laser et les techniques radar.
La deuxième partie du cours traite le contrôle de la qualité d’image et son amélioration ainsi que les techniques d’impression.
La troisième partie du cours introduit la géoréférence des images, leur adaptation à la géométrie d’une carte et présente des considérations sur le traitement numérique du terrain.

CONTENU
- les cartes numériques image d’enregistrement de la couleur
- la saisie numérique d’image
- l’enregistrement des couleurs
- la qualité d’image (fidélité des couleurs, netteté, limitations par l’objectif)
- analyse de la qualité d’image
- plateformes pour prises de vues aériennes et satellitaires
- la reproduction des images sur écran et sur imprimantes
- la géoréférence des images et leur orientation dans l’espace
- le redressement géométrique des images et la production d’orthophotos
- principe de l’altimètre à laser
- le traitement du modèle numérique de terrain

OBJECTIVES
The course gives an introduction to the use of digital cameras, including amateur cameras, and will also deal with the special cameras for aerial and satellite imagery. Laser altimeters and radar techniques are also taken into consideration.
The second part deals with the control of image quality, the refinement as well as the printing techniques.
The third part introduces to the georeference of images, their adaptation to the geometry of a map, and presents considerations on the treatment of digital terrain models.

CONTENTS
- the capture of digital images
- color encoding
- image quality (quality control, sharpness and limitations due to the lens)
- analysis of image quality
- specific cameras for taking aerial and satellite images
- reproduction of images on a screen and by printing
- georeference of the images and their orientation in space
- geometric rectification of images and production of orthophotos
- principles of the laser altimeter and of the radar devices
- treatment of the digital terrain model

FORME DE L’ENSEIGNEMENT:
BIBLIOGRAPHIE:
LIAISON AVEC D'AUTRES COURS:
Préalable requis:
Préparation pour:

NOMBRE DE CREDITS : 6 pour I et II
SESSION D’EXAMEN : Été
Contrôle continu

FORME DU CONTROLE
OBJECTIFS
Le cours analysera quelques matériaux, thèmes et méthodes du projet urbain et territorial, du XIXe siècle à nos jours. Ce cours mettra en lumière différentes stratégies de sélection et de composition des « matériaux » de la ville, en s'appuyant aussi bien sur la lecture des textes des urbanistes que sur l'interprétation de projets (contextuels/pragmatiques ou exemplaires/illustratifs).
En appelant matériaux « tout ce qu'on peut combiner » (M. Butor), nous partons de l'hypothèse que tout projet de transformation de la ville, du territoire ou de ses parties, découle nécessairement : 1) d'une simplification de la réalité, 2) de la sélection de quelques-unes de ses composantes, 3) de leur considération en tant que matériaux constitutifs de la ville et du projet, disponibles à assumer rôles, fonctions et significations différentes selon les séquences spatiales et temporelles différentes dans lesquelles ils sont inscrits. Il nous sera possible d'identifier différents styles du projet urbain et, en parallèle, différentes manières de penser et de représenter la ville moderne et la ville contemporaine.

CONTENU
Au cours des deux semestres, les cours théoriques seront groupés selon les thématiques suivantes :
- Manuels : textes qui développent une analyse de la ville, de ses composantes et de leurs règles de composition, de Camillo Sitte à Rem Koolhaas ;
- Le nouveau monde : la ville et le territoire américains vus comme l'« autre » développement de la ville et du territoire européens ;
- Fondation et planification : déclinaisons de l'idéologie du plan ;
- Le parc et/ou la ville : une alternative qui peut déboucher sur une identité lorsque la ville devient elle-même un grand parc ;
- Recherches en cours : présentation d'une série de recherches en cours, portant sur les notions de densité, d'espace vide, de composition/non-composition et d'échelle.

OBJECTIVES
The course analyzes materials, themes and methods of both urban and territorial project from the 19th Century until today. It outlines different strategies in the selection and composition of urban materials by focusing on writings of urban planners and on the interpretation of projects (contextual/pragmatic or revealing/illustrative).
As materials are « everything we can combine » (M. Butor), we assume that any project of urban transformation, as well as territory or its parts, must be the result of: 1) a simplification of reality, 2) a selection of some of its components, 3) a consideration of these as materials shaping the city and the project as well as ready to assume various roles, functions and significances according to the different sequences of space and time in which they belong. We can then identify different styles in any urban project and at the same time different ways of thinking and representing the modern and contemporary city.

CONTENTS
Lasting two semesters, the theoretic courses are grouped according to the following topics:
- Handbooks : writings analyzing the city, its elements and its assembling rule, from Camillo Sitte to Rem Koolhas.
- The new world: the American city and territory as the « other » development of the European one.
- To found and to plan: two inflexions of a plan ideology.
- The park and the city: an alternative potentially resulting in an identity when the city becomes a big park.
- Current researches: presentation of various current researches based on the notions of density, of empty space, of composition/non-composition and of scale.

FORME DE L'ENSEIGNEMENT: Cours théorique
BIBLIOGRAPHIE: Notes de cours distribuées en début de cours
LIAISON AVEC D'AUTRES COURS:
Préalable :
Préparation pour:

NOMBRE DE CREDITS: 3 pour I et II
SESSION D'EXAMEN: Été
Contrôle continu
FORME DU CONTROLE: travail écrit
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>7</td>
<td></td>
<td>X</td>
<td></td>
<td>28</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Voir page Web :
http://ssie.epfl.ch/plan_etude/sem3-6_05-05.php

CONTENU

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:
Préalable :
Préparation pour:

NOMBRE DE CREDITS: 2
SESSION D'EXAMEN: Printemps

FORME DU CONTROLE:
Mineur : 5. Développement territorial

<table>
<thead>
<tr>
<th>Titre</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMENAGEMENT DU TERRITOIRE</td>
<td>URBAN AND REGIONAL PLANNING</td>
</tr>
</tbody>
</table>

Enseignants: Monique Ruzicka-Rossier, Pierre-Alain Rumley, chargés de cours AR

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE, AR</td>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td>28</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS
- Sensibilisation au rôle de la réflexion territoriale dans votre future activité professionnelle d’ingénieur et d’architecte.
- Apprentissage d’une démarche du projet s’appuyant sur les différentes échelles spatiales.
- Perception des dimensions interdisciplinaire et transdisciplinaire des interventions territoriales.

OBJECTIVES
- To provide engineers and architects with a sense of major planning issues.
- To approach the different spatial scales in the process of urban and regional planning.
- To familiarize with the interdisciplinary and transdisciplinary regarding the territorial actions.

CONTENU
- Connaissance de base des principes, des objectifs et des instruments du développement territorial.
- Conception à l’échelle locale, du quartier à l’aire urbaine (problématiques, méthodes, exemples).
- Aménagement supralocal (grandes lignes du développement national, fédéralisme, clivage économique, régionalisations, schéma de développement de l’espace communautaire européen).

CONTENTS
- To acquire basis about planning ends and instruments.
- To be aware of the complexity of design of the local scale up to urban territories (problems, methods and examples).
- Supralocal planning (Switzerland, Europe, sectoral and regional concepts).

FORME DE L’ENSEIGNEMENT: Exposés et études de cas

BIBLIOGRAPHIE: Résumés polyméoriés

LIAISON AVEC D'AUTRES COURS: Théorie du territoire, théorie urbaine, UEC, UED

Préalable :

Préparation pour:

NOMBRE DE CREDITS: 2
SESSION D’EXAMEN: Printemps

FORME DU CONTROLE: Examen oral
Titre: UE C Aménagement urbain, mobilité et environnement

Enseignants: Jacques MACQUAT, Dr Martin SCHULER, Eduardo CAMACHO, chargés de cours

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 84</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR, SIE</td>
<td>7 ou 8</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>Par semaine: 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Cours: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Exercices: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Pratique:</td>
</tr>
</tbody>
</table>

OBJECTIFS

Etude d’une ville suisse, suivie de projets d’aménagements en collaboration avec les autorités, dans le but de trouver des solutions aux problèmes territoriaux actuels. Les groupes transdisciplinaires (architecte, ingénieur, géographe) choisissent une problématique et présentent une analyse et des réponses aux politiques et professionnels de l’aménagement de la ville à la fin du semestre.

Etude : du développement historique et morphologique de la ville ; population et emplois ; économique, politique de l’habitat ; déplacements (marche, vélo, skate inclus) ; équipements ; rôle régional, cantonal. Des professionnels participent à l’UEC (interventions et conseil).

Les étudiants utilisent les instruments d’aménagement, les plans légaux en vigueur, se concentrent sur une échelle : locale (plan de quartier ; espace public) ; urbaine (plan directeur des transport) ; ou régionale (Agenda 21 ; tourisme).

CONTENU

Cas d’étude : la Ville de Martigny (VS ; 15.000 h.), au carrefour des Alpes (Suisse, France, Italie), dans ses contextes communal, régional et transfrontalier. Son bassin d’emploi (50’000 h.) comprend 3 districts : Martigny, Entremont et une partie de St Maurice.

Les étudiants aborderont les enjeux d’aménagement et de développement territorial tels que: le rôle de Martigny dans l’espace Mont-Blanc (triangle Martigny-Aoste-Chamonix); la relation et le développement Martigny-Aoste (liaison ferroviaire); le Plan directeur de la Ville de Martigny ; la Troisième Correction du Rhône; un nouveau stade de Foot; les friches industrielles (ancienne usine d’aluminium); la valorisation de l’ensemble des sites Romains de la ville; divers plans de quartiers...

OBJECTIVE

Study a Swiss city, collaborating with its town-planning authorities in order to solve nowadays territorial issues. Transdisciplinary groups of students (architects, engineers, geographers) work together on one chosen project thematic; the final proposal gives an analysis and answers to these issues. Students act as urban planning advisers, showing their project to the city authorities at the end of the semester.

Study of a city: historical and morphological development; population and workforce evolution; dwelling and transportation (included cycling, walking, skating) politics; infrastructures, environmental issues; role at a regional and district level. Professionals belonging to these fields participate into the UEC (conferences; advices to groups) Groups learn about local and regional planning regulation system (master plan; communal plan); focus on one scale in their project: local (community plan; public space), urban (pedestrian transportation plan) or regional (Agenda 21; tourism).

CONTENT

Case study: the city of Martigny (VS; 15’000), Alps crossroad (Switzerland, France, Italy) and its communal, regional and international contexts. Its region (50’000) includes 3 districts (Martigny, Entremont, St Maurice partially).

Students will work on planning projects such as: Martigny’s role in Mont Blanc’s territorial space (Martigny-Aoste-Chamonix triangle); martigny-Aoste relation and development (railway); the Town Plan Planning; the Rhône’s third plan; a new football field; industrial waste land; Roman sites requalification; several local plans;...

Forme de l’enseignement: cours, interventions et atelier

Bibliographie: comprise dans un copié-distribué en début de semestre

Liaison avec d’autres cours:

Préalable requis:

Préparation pour:

Nombre de crédits: 5

Session d’examen: printemps

Forme du contrôle: rendu d’un mémoire et poster et défense du projet devant les autorités municipales
Titre: UE J TEMPS, TERRITOIRE ET PAYSAGE
Retour à la nature dans le territoire contemporain

Enseignants: Elena COGATO LANZA, Christophe BEUSCH, chargés de cours

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 84</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>7</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Rien ne semble contrarier la montée en puissance du « thème » de la nature dans les politiques et les projets territoriaux d'aujourd'hui. Le « retour à la nature » ne cesse de hanter notre imaginaire, en faisant l'objet d'une réinvention constante. Par exemple, depuis une quinzaine d'années, le domaine de la renaturation porte remède à des situations environnementales en crise (rivières polluées) ou succède à des formes d'exploitation territoriale qui arrivent à leur terme (mines et carrières, agriculture). Mais tout retour à la nature, permi par une maîtrise de plus en plus raffinée des processus naturels (biologiques, hydrologiques, géologiques, etc.), débouche de fait dans la production d'un nouvel état de nature, car il opère inévitablement un choix parmi les nombreuses natures auxquelles l'on peut aspirer et que l'on peut réaliser.

Cette UE veut observer les formes que le retour à la nature est en train de prendre dans le territoire contemporain, en réservant une attention particulière à la Suisse. Sur la base d'exemples concrets et de témoignages de protagonistes, il s'agira de mettre en lumière les relations qui s'établissent entre les configurations de l'espace physique, les usages (avec tout l'imaginaire social qui s'y exprime) et les pratiques scientifiques et professionnelles.

CONTENU

1) Etudes de cas

2) Apports théoriques :
 - Projets de reconversion territoriale
 - Analyse des images/modèles de description du territoire contemporain
 - Le projet et les modes de représentation
 - Relations entre professions du territoire
 - Approche du projet comme réponse à des questions philosophiques : p. ex., quel sens donner à la notion de « nature » ?

OBJECTIVE

The theme of « nature » is having a greater importance in public policy and territorial projects. The return to nature goes on haunting our imaginary and is constantly reinvented. For instance, regeneration has been both repairing critical environmental conditions (polluted rivers) and following to obsolescent territory exploitations (quarries or agriculture) for fifteen years. Actually, any return to nature, allowed by a greater control on natural processes (biological, hydrological, geological), is the production of a new nature, because it depends on the choice of a kind nature among all the possible ones.

Our UE intends to analyze the different forms of return to nature in contemporary territory, mostly in Switzerland. Based on case studies and witnesses' accounts, UE J will bring to light relations among territory figures, uses and professional and scientific practises.

CONTENUS

1) Case studies

2) Theoretical contributions:
 - Presentation of «changeover» land plans
 - Analysis of some images/models used in order to characterize contemporary built environments
 - Relations between project and representation
 - Approach of the relations among the professions in charge of aspects of the environment
 - Approach of the project as an answer to philosophical questions: i.e., which meaning can we give to the notion of «Nature»?

Forme de l'enseignement: cours, exercices, séminaires

Bibliographie: comprise dans un polycopié distribué en début de semestre

Liaison avec d'autres cours:

Préalable requis:

Préparation pour:

Nombre de crédits: 5

Session d'examen: printemps

Forme du contrôle: appréciation d'un travail d'analyse portant sur un projet et sur un texte théorique
8e semestre
OBJECTIFS
Ce cours vise à sensibiliser les étudiants aux droits et obligations qui découlent des principaux contrats de la vie professionnelle. Il traite des divers aspects de la responsabilité professionnelle (contractuelle, civile, pénale) et des mécanismes d'assurances au moyen d'exemples tirés de la pratique.

DESCRIPTIONS

CONTENU
- Généralités sur le droit des contrats ; qualification
- Les droits et les obligations de l'ingénieur dans le contrat d'entreprise, le contrat de mandat et le contrat de travail
- Les principes de la responsabilité contractuelle
- Les principes de la responsabilité délictuelle
- Le contrat d'assurance
- Etudes de cas

OBJECTIVE
Describe the rights and obligations arising from the main contracts applicable to engineers. Examine the various aspects of engineer's professional liability (based on contracts, torts and criminal law) as well as the mechanism of insurances. The legal concepts and theory are illustrated by practical cases.

CONTENTS
- Law of contracts: fundamentals, qualification
- Rights and duties of the engineers according to construction contracts (work contract, mandate, employment contract).
- Principles of contractual liability
- Liability based on tort
- Insurance contract
- Case studies

FORME DE L'ENSEIGNEMENT: Cours interactif
BIBLIOGRAPHIE: Polycopié, textes législatifs
LIAISON AVEC D'AUTRES COURS:
Préalable requis: Droit I
Préparation pour: Droits réels, Droit de l'environnement

NOMBRE DE CREDITS : 2
SESSION D’EXAMEN : Été
Branche de semestre. Contrôle continu
FORME DU CONTROLE : Ecrit
Titre: ECO-CONCEPTION ET ECOLOGIE DES SYSTEMES INDUSTRIELS
Title: ECODESIGN AND ECOLOGY OF INDUSTRIAL SYSTEMS

Enseignant: Prof. Olivier Jolliet, SIE ; Suren Erkman, chargé de cours SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales</th>
<th>Par semaine</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales</th>
<th>Par semaine</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
Cette année de transition, la première partie abordera principalement l'analyse du cycle de vie en faisant le lien avec l'eco-conception. L'objectif est de permettre aux participants de:
- Connaître les dernières méthodes et bases de données existantes.
- d'analyser et de critiquer un écobilan et un système industriel, en identifiant ses points clés.
- Avoir appliqué les méthodes au travers d'exercices et d'utilisation de logiciels.

CONTENU
Analyse du cycle de vie et eco-conception (28h.)
L'écobilan ou analyse environnementale du cycle de vie évalue la charge environnementale d'un produit ou d'une activité, du berceau à la tombe. Sur la base d'applications concrètes, le cours suit la démarche séquentielle de l'écobilan :
- Introduction : Spécificités de l'écobilan et comparaison avec d'autres outils d'analyse environnementaux
- Définition des objectifs et du système : fonction du système, critères de cohérences pour les limites du système
- Inventaire des ressources et des émissions dans l'air, l'eau et le sol (logiciel SIMAPRO)
- Analyse de l'impact environnemental
- Interprétation des résultats. Liens entre impact environnementaux et analyse socio-économique.

Écologie des systèmes industriels (14h.)
Le système industriel lui-même peut être considéré comme un cas particulier d'écosystème. Telle est la perspective de l'écologie industrielle, qui propose une approche pratique, économiquement viable, du développement durable. Sur la base d'exemples concrets, le cours présentera les notions de base de l'écologie industrielle : métabolisme industriel, symbiose industrielle, parcs eco-industriels, dématérialisation et décarbonisation, stratégies et trajectoires technologiques pour l'optimisation des flux de matière et d'énergie.

FORME DE L'ENSEIGNEMENT: Cours ex cathedra, exercices et utilisation de logiciels
LIAISON AVEC D'AUTRES COURS: Positionnement et cartographie
Préalable :
Préparation pour:

OBJECTIVES
In this transition year the course will mainly address Life Cycle assessment (LCA), with links to eodesign. The course aims to enable the participants:
- To know the last methodologies, the basic rules and frameworks for good LCA and Industrial ecology practices
- To analyze and criticize an LCA and an industrial system, looking rapidly at the key issues,
- To apply methods using exercises and software.

CONTENTS
Life Cycle Assessment and eodesign (28h.)
Environmental Life Cycle Assessment assesses the environmental impact of products and systems over the whole product life cycle. On the basis of practical applications, teaching will follow the four phases of LCA:
- Introduction: LCA compared to other environmental tools
- Goal and system definition: product function and functional unit. Consistent system boundaries definition.
- Inventory of resources extraction and emissions to air, water, soil. (SIMAPRO)
- Impact assessment.
- Interpretation: sensitivity and uncertainty analyses, together with cost-benefit analysis.

Ecology of industrial systems
Industrial ecology states that the industrial system can be considered as a particular case of ecosystem and proposes an economically viable approach of sustainable development.
Based upon real-life examples, this course will present the basic notions of industrial ecology: industrial metabolism, industrial symbiosis, eco-industrial parks and networks, dematerialization and decarbonization, technological trajectories and strategies to optimize material and energy flows and stocks.

FORME DE L'ENSEIGNEMENT: Cours ex cathedra, exercices et utilisation de logiciels
LIAISON AVEC D'AUTRES COURS: Positionnement et cartographie
Préalable :
Préparation pour:

NOMBRE DE CREDITS: 3
SESSION D'EXAMEN: Été
Contrôle continu
FORME DU CONTROLE: Examen oral
OBJECTIFS
Une bonne connaissance des processus d'organisation du territoire de même que des politiques qui régissent ce dernier - l'aménagement du territoire et d'autres politiques ayant un impact sur le territoire est indispensable aux architectes et aux ingénieurs, futurs projeteurs de réalisations architecturales, urbaines et rurales.

Le cours a pour but de donner une introduction à cette problématique complexe qui fait référence aux théories du développement, de l'organisation spatiale, des processus de régionalisation ainsi qu'à des notions urbanistiques, techniques et juridiques.

Les méthodes d'analyse territoriale telles que les enquêtes, le traitement statistique, la cartographie et les systèmes d'information géographique (GIS) font partie du cours.

CONTENU
Présentation des buts et principes de l'aménagement du territoire et des autres politiques territoriales aux différentes échelles allant du local au niveau européen, de leur histoire, des processus modifiant l'organisation du territoire (régularités territoriales), des méthodes, techniques et instruments, des acteurs et des compétences. Les systèmes d'information géographique sont présentés à la fois en tant que support à l'analyse et outils d'aide à la décision politique.

Traitement d'autres politiques à impacts territoriaux, des transports aux politiques sociales en intégrant le rôle du fédéralisme. Analyse des représentations de la population par l'interprétation des cartes de votations. Discussions des conceptions territoriales et analyses de problématiques telles que la densité et la mixité, la régionalisation, le développement durable, les réseaux urbains, le paysage et la prospective territoriale.

FORME DE L'ENSEIGNEMENT: ex cathedra, parfois travaux

BIBLIOGRAPHIE: distribué au début du semestre 7

LIAISON AVEC D'AUTRES COURS: si possible, UEC ; fait partie du menu en développement territorial (cf. ce programme)

Préalable : Suivi du cours du 7e semestre

Préparation pour: Cours obl. ; cours de base pour le menu en DT

NOMBRE DE CREDITS: 3 pour I et II

SESSION D'EXAMEN: Été

Contrôle continu

FORME DU CONTROLE: examen écrit
OBJECTIFS

Connaître les processus de recyclage des matériaux et les principes de gestion des déchets, ainsi que leurs aspects techniques, économiques et environnementaux.

GOALS

To familiarize the student with different technologies, and economic and environmental problems of recycling of materials and the disposal of waste.

CONTENU

- Déchets et possibilités de récupération
- Principes des processus de recyclage
- Recyclage des métaux
- Recyclage des plastiques
- Récupération d'énergie
- Déchets toxiques
- Recyclage du papier et du verre
- Nouveaux produits à partir de déchets
- Ecobilan du recyclage

CONTENT

- Waste and possibilities for recuperation
- Principles of recycling
- Recycling of metals
- Recycling of polymers
- Recuperation of energy
- Toxic wastes
- Recycling of paper and glass
- New products out of waste
- Life Cycle Assessment of recycling

FORME DE L'ENSEIGNEMENT:

Séminaires, visites et discussions

BIBLIOGRAPHIE:

Notes de cours polycopiées et copies d'articles

LIAISON AVEC D'AUTRES COURS:

Cycle de vie des polymères

NOMBRE DE CRÉDITS:

2

SESSION D'EXAMEN:

Eté

FORME DU CONTRÔLE:

Projet en groupe (rapport et exposé en classe)
Titre: FILIERES DE CONVERSION

Enseignant: Prof. Daniel Favrat, GM

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>8</td>
<td></td>
<td>x</td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td>SIE</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Cours 2</td>
</tr>
</tbody>
</table>

OBJECTIFS

Voir page Web:
http://ssie.epfl.ch/plan_etude/sem7-9_04-05.php

CONTENU

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

Préalable requis:
Préparation pour:

NOMBRE DE CRÉDITS: 2
SESSION D'EXAMEN: Été
Contrôle continu

FORME DU CONTRÔLE:
OBJECTIFS
Connaître les risques engendrés par des émissions polluantes, en combinant les aspects de transport des polluants dans l'environnement, d'exposition et d'effet toxiques (étudiés dans les cours précédents).

Maîtriser les méthodes d'analyse de risques sur les écosystèmes et sur l'homme.

Avoir appliqué les méthodes sur des études de cas, en particulier à l'aide d'un logiciel.

CONTENU
Le cours s'appuiera sur les cours de base sur la propagation et l'impact de polluants pour faire la synthèse de ces aspects et méthodes dans l'évaluation de risques. Il sera composé d'une série d'exposés et d'exercices pratiques, comprenant les éléments suivants:

Introduction
- Notions et niveaux de risque communément acceptés

Risques sur les écosystèmes
- L'approche PEC/PNEC, distribution de sensibilité des espèces
- L'évaluation comparative des risques liés aux substances chimiques (HC50, risques en Analyse du cycle de vie)
- Les bases de donnée existantes
- Risque des mélanges et de classes de substances particulières (métaux, pesticides, etc)
- Analyse de risque d'échantillons environnementaux
- Études de cas et exercices, en particulier à l'aide d'un logiciel de risque (risque de pesticides, etc.)

Risque sur l'homme
Le quotient de risque
Risque comparatifs sur l'homme
Analyse et propagation des incertitudes
Analyses coûts-bénéfices

*Le cours II s'effectuera en option, sous forme d'un projet de recherche de 56 heures, sur un thème proposé par les laboratoires impliqués.

GOALS
Understand the risks linked to the emissions in the environment of chemical substances, combining assessment methods of fate, exposure and toxic effects.

Master the methods assessing risk on ecosystem and human health.

Have applied the studied methods on practical case studies, also using a software

CONTENT
This course builds up on the previous courses on propagation and impacts of pollutants, synthesizing these different concepts and approaches in risk assessment methods. It will be composed of series of presentations and exercises, including:

Introduction
Risk concepts and acceptable risks

Risks on ecosystems
- The PEC/PNEC approach (Predicted Environmental Concentration/Predicted No Effect Concentration), species sensitivity distributions
- Assessment of comparative risks of chemical substances (HC50, risks for Life cycle Assessment) & databases
- Risks of mixtures and of specific chemical classes (metals, pesticides, etc.)
- Risk analysis of environmental samples
- Case studies and exercises, using software (risk of pesticides, etc.)

Risks on Human Health
Risk quotient
Comparative risks on human health
Uncertainty analysis and propagation,
Cost-benefit analysis

*Course II can be optionally taken as a research project, of 56 hours, on a subject proposed by the involved laboratories

FORME DE L’ENSEIGNEMENT:
Cours ex cathedra, exercices

BIBLIOGRAPHIE:
Notes polycopiées

LIAISON AVEC D’AUTRES COURS:
Préalable requis: Dissémination et exposition des substances chimiques, Impact des polluants sur les écosystèmes et au travail
Préparation pour: Le cours I peut être pris indépendamment, mais constitue un pré-requis pour le projet du cours II

NOMBRE DE CRÉDITS: 4 pour I et II

SESSION D’EXAMEN:
Eté
Contrôle continu

FORME DU CONTRÔLE: Examen oral
Titre: IMPACT DES POLLUANTS SUR LES ECOSYSTEMES ET AU TRAVAIL
Title: IMPACT OF POLLUTANTS ON ECOSYSTEMS AND AT WORK

Enseignants: Dr Kristin Becker van Slooten, SIE ; Prof. Michel Guillemin, IST

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>8</td>
<td></td>
<td>X</td>
<td></td>
<td>Par semaine: 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Description de l’effet des polluants sur les écosystèmes. Comprendre les processus impliqués et connaître les outils d’évaluation à disposition.

Comprendre les concepts de la santé au travail et les implications pour la gestion environnementale. Connaître les bases légales et les facteurs de risques à la place de travail.

CONTENU
Impacts des polluants sur les écosystèmes
Effets de substances organiques et des métaux sur les organismes et les communautés
Outils d’évaluation de l’impact
Etudes de cas des effets chroniques dans les systèmes naturels
La problématique des mélanges de polluants
Critères et indicateurs de l’état de l’environnement
Analyse des risques

Santé au Travail
Le contexte global et les bases légales nationales et internationales
Les polluants chimiques et physico-chimiques au poste de travail
Notions d’exposition, de concentrations et de doses (toxicologie industrielle)
Les relations dose-réponse comme base d’évaluation du risque chronique
La notion de risque acceptable en Santé au Travail
La maîtrise des risques liés aux polluants
La gestion des risques et les normes actuelles (OSHAS 18001)
Les risques émergents et les nouveaux défis

OBJECTIVES
Description of the effect of pollutants on ecosystems. Understand the involved processes and get an overview of the available evaluation tools.

Understand the concepts of occupational health and the implications for environmental management. Obtain knowledge about the legal basis and the risk factors at work.

CONTENTS
Impacts of pollutants on ecosystems
Effects of organics and metals on organisms and communities
Impact evaluation tools
Case studies of chronic effects in natural systems
Problem of pollutant mixtures.
Criteria and indicators of the environment
Risk analysis

Occupational Health
Global context and national and international legislation
Chemical and physico-chemical pollutants at work
Concepts of exposure, concentrations and doses (industrial toxicology)
Dose-response relations as a basis of chronic risk assessment
Concept of acceptable risk in occupation health
Risk control in relation to pollutants
Risk management and legislation (OSHAS 18001)
Relations between management systems
Emergent risks and new challenges.
2. Biotechnologies environnementales

Titre: PRODUCTION ET CONTROLE DE L'EAU POTABLE
Title: PRODUCTION AND SURVEY OF DRINKING WATER

Enseignant: Jean-Marc Ribi, chargé de cours SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Initiation aux concepts, méthodes et techniques d’alimentation en eau, dans la perspective de :

- répondre aux exigences sécuritaires et opérationnelles des activités humaines dans les agglomérations, tout en préservant les écoulements naturels sollicités.
- planifier et concevoir des réseaux et des équipements fonctionnels, durables et rationnels, pour l’approvisionnement en eau potable des municipalités.
- instaurer des procédures d’exploitation, de renouvellement et de financement de ces infrastructures.

OBJECTIVES

Introduction to concepts, methods and techniques for water supply, in order to :

- ensure the safety of the population and the supply of water in urban areas taking into consideration the protection of the natural water flows.
- plan and design functional, sustainable and rational networks and equipments for drinking water in municipalities.
- establish management rules for maintenance and renewal of infrastructures taking into account financial aspects.

CONTENU

Approvisionnement en eau potable:

- ressources, besoins et demande
- qualité et traitements
- captages, puits et prises d’eau
- transport, pompage et accumulation
- réseau de distribution
- mesures et régulation
- maintenance et tarification

CONTENTS

Drinking water supply :

- Water resources, needs and demand
- water quality and treatment
- water capture, well and intake
- transportation, pumping and storage
- distribution network
- measurements and regulation
- maintenance and fixing price rates

FORME DE L’ENSEIGNEMENT: Cours ex cathedra

BIBLIOGRAPHIE: Notes de cours polycopiées

LIAISON AVEC D’AUTRES COURS: hydraulique et réseaux

Préalable : Mineur en biotechnologie environnementale

NOMBRE DE CREDITS 2

SESSION D’EXAMEN: Été
contrôle continu

FORME DU CONTROLE: Examen oral
TRAITEMENT BIOLOGIQUE DES DECHETS ORGANIQUES ET EFFLUENTS GAZEUX

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Héures totales: 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>8</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Comprendre et savoir appliquer les techniques biologiques à la valorisation agricole, alimentaire et énergétique des effluents industriels et des déchets organiques solides.

Acquérir les connaissances de base et mettre en œuvre les technologies nécessaires à l'élimination des odeurs et au traitement des composés organiques volatils (COV).

CONTENU

Valorisation biologique des déchets et effluents organiques
- Compostage
 - Biologie, technologie, procédés
- Biométhanisation
 - Biologie, technologie, procédés
- Production de biocarburants
 - Ethanol
 - Acétoné-butanol

Traitement des odeurs et des COV
- Définition, nature, sources et caractéristiques
 - Unités, concentrations, seuils
- Traitements physico-chimiques
 - Adsorption, absorption, neutralisation, oxydation
 - Cryo-condensation, traitements thermiques
- Traitements biologiques
 - Biolaveurs et biofiltres
 - Biofiltres à ruissellement

Visites techniques

OBJECTIVES

Understand and be able to apply biological techniques for the bioconversion of industrial effluents and solid organic wastes with agricultural- food- or energetic added value.

Acquisition of basic knowledge and design of technologies which are required for the treatments of odours and volatile organic compounds (VOC).

CONTENTS

Biological treatment of organic wastes and effluents with added value
- Composting
 - Biology, technologies, processes
- Biomethanation
 - Biology, technologies, processes
- Biofuel production
 - Ethanol
 - Acetone-butanol

Treatment of odours and of VOC
- Definition, nature, sources and characteristics
 - Units, concentrations, threshold values
- Physical-chemical treatments
 - Adsorption, absorption, neutralization, oxidation
 - Cryo-condensation, thermal treatments
- Biological treatments
 - Bioscrubbers and biofilters
 - Biological trickling filters

Technical visits

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE: Notes de cours polycopiés et documents web

LIAISON AVEC D'AUTRES COURS:

<table>
<thead>
<tr>
<th>Préalable</th>
<th>Préparation pour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Génie des procédés</td>
<td>Mineur en Biotechnologie environnementale</td>
</tr>
</tbody>
</table>

NOMBRE DE CREDITS: 4

SESSION D'EXAMEN: Été

FORME DU CONTROLE: Examen oral
MINEURS : 1. Gestion de la pollution et écologie industrielle
 2. Biotechnologies environnementales

TITRE : TRAITEMENT DES EAUX USEES
 INDUSTRIELLES

TITRE : TREATMENT OF INDUSTRIAL
 WASTEWATERS

ENSEIGNANT : César Pulgarin, chargé de cours SIE

SECTION (S) : SIE

SEMESTRE : 8

OBBLIG : X

OPTION : Facult.

HEURES TOTALES : 28

Par semaine : 2

Cours : 2

Exercices : 0

Pratique : 0

OBJECTIFS

Approfondir les connaissances sur les méthodes et
techniques mises en œuvre dans les traitements avancés
des eaux résiduaires industrielles

OBJECTIVES

Deepening knowledge on methods and techniques
used for the advanced treatments of industrial
wastewaters

CONTENU

Les eaux usées industrielles
 Types, caractéristiques, composition.
 Normes et législation.

Traitement physico-chimiques
 Précipitation, flocculation, adsorption, filtration,
 stripping.

Traitements chimiques
 Oxydation avancée, réduction, échange d'ion,

Couplage des traitements physico-chimiques,
 chimiques et biologiques
 Études de cas.

CONTENTS

Industrial wastewaters
 Types, characteristics, composition
 Norms and legislation

Physical-chemical treatments
 Precipitation, flocculation, adsorption, filtration,
 stripping

Chemical treatments
 Advanced oxidation, reduction, ion exchange

Coupling physical-chemical, chemical and
 biological treatments
 Case studies.

FORME DE L'ENSEIGNEMENT : Cours ex cathedra

BIBLIOGRAPHIE : Notes polycopiées

LIAISON AVEC D'AUTRES COURS:

Préalable : Génie des procédés

Préparation pour : Mineur en biotechnologie environnementale

NOMBRE DE CREDITS : 2

SESSION D'EXAMEN : Été

Contrôle continu

FORME DU CONTROLE : Examen oral
OBJECTIFS

Introduction au génie biologique et à l'utilisation des plantes vivantes comme matériau de construction. Comprendre et modéliser les principaux processus écologiques et environnementaux et leurs interactions intervenant dans le cadre de la bio-ingénierie des cours d'eau et des systèmes naturels. Compréhension et quantification des comportements morphologiques et dynamiques des ouvrages et des aménagements.

CONTENU

- Le génie végétal : but, historique, définitions, fondement, principes, avantages et limites
- Approche écosystémique dans les travaux de bio-ingénierie.
- Processus écologiques pertinents et leurs interactions dans le système rivière et autres systèmes naturels.
- Principes de la renaturation/restauration des cours d’eau et d’autres systèmes naturels
- Approche de l’incertitude dans les systèmes naturels ; gestion adaptative.
- Les techniques du génie végétal : démarche d’intervention, diagnostic et dimensionnement, détail des techniques, causes d’échec et conditions de réussite
- Exemples de réalisations : analyse et visites
 - Petits, moyens et grands cours d’eau, torrents et fleuves.
 - Talus routiers et chemins de fer
 - Bassins techniques, étangs naturels, etc.

OBJECTIVES

Introduction to bioengineering and to the use of living plants as a building material. Understand and model the main ecological and environmental processes and their interactions involved in the framework of the bioengineering of rivers and natural systems. Understand and quantify the morphological and dynamical behaviour of structures and management projects.

CONTENTS

- Ecosystem based approach in bioengineering.
- Relevant ecological processes and their interactions in the river system and other natural systems.
- Principles for the renaturation/restoration of rivers and other natural systems
- Dealing with uncertainty in natural systems; adaptive management
- Soil bioengineering: aims, history, definitions, foundation, principles, advantages and limitations.
- Bio-engineering techniques: intervention approach, analysis, diagnosis and dimensioning, techniques’ details, causes of failure and conditions for success
- Examples of projects: analysis and field trips
 -Little, medium and large watercourses, torrents, large and tidal rivers.
 - Road, highway and railway slopes
 - Ponds, basins

FORME DE L’ENSEIGNEMENT: Cours ex-cathedra, exercices et visites d’ouvrages construits et en construction

BIBLIOGRAPHIE: Polycopié + autres supports de cours

LIAISON AVEC D'AUTRES COURS:
Bio-ingénierie des cours d’eau et des systèmes naturels I
Préalable : Bio-ingénierie des cours d’eau et des systèmes naturels I,
Ecologie des écosystèmes et du paysage
Préparation pour:

NOMBRE DE CREDITS: 5 pour I et II

SESSION D'EXAMEN: Été
Contrôle continu

FORME DU CONTROLE: examen oral
Titre: CHANGEMENTS CLIMATIQUES ET IMPACTS
Title: CLIMATIC CHANGES AND IMPACTS

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>8</td>
<td></td>
<td>X</td>
<td></td>
<td>28</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Description des processus du climat actuel et interaction entre l'atmosphère, les océans, la terre et la biosphère. Exemples de modèles climatiques passés.

Comprendre certains facteurs de changements climatiques (comme le réchauffement, les trous d'ozone et la pollution atmosphérique).

CONTENU
- Introduction
- Rayonnement et équilibre de l'énergie globale
- Circulation atmosphérique
- Circulation de l'océan
- Interaction océan/atmosphère
- Cycle du carbone
- Régulation du climat à long terme
- Évolution chimique de l'environnement
- Variations du climat à court terme
- Réchauffement global
- Diminution de l'ozone
- Causes et conséquences du changement climatique (faune, flore, glace et niveau des océans, agriculture, économie...)
- Mesure du changement climatique et modélisation
- Prédictions + que faire ?

OBJECTIVES
The class will provide a description of the processes controlling the present climate and the interactions between the atmosphere, the oceans, the solid earth, and the biosphere. Past climates will be also described on various time scales. Finally, a number of issues related to global change (such as global warming, stratospheric ozone depletion, and global air pollution) will be examined.

CONTENTS
- Introduction
- Radiation and global energy balance
- Atmospheric circulation
- Ocean circulation
- Atmosphere ocean interactions
- Carbon cycle
- Long-term climate regulation
- Chemical environment and evolution of the atmosphere
- Short-term climate variability
- Global warming
- Ozone depletion
- Causes and consequences of climate change (flora, fauna, ice + sea levels, agriculture, disease spread, economic changes...)
- Measurement of climate change and modeling
- Predicting climate change + what to do ?

FORME DE L'ENSEIGNEMENT: Cours ex cathedra, et exercices

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

Préalable :

Préparation pour :

NOMBRE DE CREDITS: 2

SESSION D'EXAMEN: Été

Contrôle continu

FORME DU CONTROLE : examen oral
Titre: CONSERVATION DES SOLS ET GESTION DES SYSTEMES NATURELS II

Titre: SOIL CONSERVATION AND MANAGEMENT OF NATURAL SYSTEMS II

Enseignants: Prof. Alexandre Buttler, SIE
Claire Guénat, François Gillet, chargés de cours SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales</th>
<th>Par semaine</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>8</td>
<td></td>
<td></td>
<td>X</td>
<td>42</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

OBJECTIFS
Connaissance des principes de la gestion écosystémique des ressources et du maintien de la qualité des systèmes naturels et semi-naturels (développement durable).
Initiation aux méthodes de gestion et de production des milieux (agronomie et forêt).
Initiation aux méthodes de préservation, d'entretien, de restauration, de revitalisation et de régénération des milieux (génie et gestion écologique).
Sensibilisation aux problèmes de la protection de la nature et du paysage, et des risques naturels.
Sensibilisation aux conséquences et aux risques des changements climatiques.
Connaissance du contexte législatif et des bases légales (protection, mesures incitatives, subventions, conventions).
Contact avec les praticiens et les bureaux d'étude

CONTENU
Evaluation de la qualité d'un système écologique et gestion écosystémique
Bases légales nationales et internationales de la protection de la nature et de la biodiversité
Sylviculture, plans de gestion et multifonctionnalité des forêts
Foresterie tropicale et enjeux
Agrosystèmes et développement durable
Les systèmes mixtes de l'agro-sylvo-pastoralisme
Gestion des zones humides
Gestion des écosystèmes alpins
Les écosystèmes urbains
Consequences des changements climatiques et transformation des écosystèmes

CONTENTS
Knowledge on principles of ecosystemic management of resources and maintenance of the quality of natural and semi-natural systems (sustainable development).
Introduction to the methods of management and production (agronomy and forestry).
Introduction to the methods of preservation, maintenance, restoration, revitalisation and regeneration (management and ecological engineering).
Attract attention on problems of nature and landscape conservation, and natural risks.
Attract attention on the consequence and risks of climate change.
Knowledge on the legislation framework and legal basis (protection, incitation measures, subsidies, conventions).
Contact with practitioners.

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE: Polycopié + autres supports de cours

LIAISON AVEC D'AUTRES COURS:
Hydrologie et Hydraulique des systèmes urbanisés II

Préalable : Fonctionnement des écosystèmes (4ème sem. SIE)
Conseillés : Bio-ingénierie des cours d'eau et des systèmes naturels (7-8ème sem. SIE)
Législation environnementale (6ème sem. SIE)

Préparation pour:

NOMBRE DE CREDITS: 4 pour I et II

SESSION D'EXAMEN: Été
Contrôle continu

FORME DU CONTROLE: oral, 30 minutes
OBJECTIFS
Assimiler les principes théoriques nécessaires à la mise en œuvre de techniques destinées à corriger le régime hydrique des sols souffrant d’un manque d'eau (irrigation) ou d’un excès d'eau (assainissement). Etre capable de concevoir, dimensionner, réaliser et gérer les ouvrages d'irrigation et de drainage des sols agricoles de nature à minimiser les impacts sur l'environnement.

CONTENU
Méthodes et techniques d'irrigation
- technologie et bases de dimensionnement des systèmes d'irrigation par gravité, aspersion ou micro-irrigation
- conception du réseau d'aménée et de distribution de l'eau
- impacts des réseaux d'irrigation

Assainissement des sols agricoles
- drainage de surface
- drainage de subsurface : principes de calcul de l'écartement des drains, caractéristiques géométriques des drainages, modalités de conception d'un réseau
- exécution et entretien des réseaux de drainage
- drainage et irrigation
- assainissement et environnement
- zones de transition

Elaboration d'un avant projet de drainage ou d'irrigation

OBJECTIVES
To acquire basic elements required to implement appropriate techniques in order to improve the water regime of soils affected by a water deficit (irrigation) or by excess water (drainage).

To be able to plan, design and manage irrigation and drainage systems of agricultural lands, while minimizing environmental impacts.

CONTENTS
Irrigation
- technical aspects and design procedures of surface, sprinkler and trickle irrigation systems
- design of the conveyance and distribution systems
- impacts of irrigation systems

Drainage of agricultural lands
- surface drainage
- subsurface drainage: estimation of drain spacing, geometrical characteristics of drainage systems, planning and design of drainage systems
- construction and maintenance of drainage systems
- drainage and irrigation
- environmental impacts of drainage systems
- buffer zones

Elaboration of a drainage or irrigation pilot study

FORME DE L'ENSEIGNEMENT: Cours, projet

BIBLIOGRAPHIE: Cours polycopiés

LIAISON AVEC D'AUTRES COURS:
Préalable : Hydraulique, Hydrologie, Physique du sol, Pédologie
Préparation pour:

NOMBRE DE CREDITS: 4 pour I et II
SESSION D'EXAMEN: Été
Contrôle continu

FORME DU CONTROLE:
Cours: **GESTION INTEGREE DES EAUX I**
Lecture: **INTERGRATED WATER MANAGEMENT I**

<table>
<thead>
<tr>
<th>Enseignants:</th>
<th>Prof. Joseph Tarradellas, Prof. Vera Slaveykova, SIE, Dr. Urs Lemmin, chargé de cours SIE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales</th>
<th>Par semaine</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>8</td>
<td></td>
<td></td>
<td>x</td>
<td>42</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

OBJECTIFS
A la fin du cours, les étudiants seront capables:
d'évaluer les aspects les plus importants de la qualité
des eaux naturelles en vue de la protection du milieu
aquatique, de l'utilisation à des fins agricoles et
industrielles et pour la consommation humaine. L'eau
matière est considérée au travers de ses propriétés
physico-chimiques tandis que l'eau-milieu est étudiée
du point de vue de la vie aquatique et de l'hydraulique
environnementale. Le « système lac » étant pris
comme exemple pour ce dernier aspect.

CONTENU
L'eau matière. Pouvoir dissolvant de l'eau, solubilité des gaz.
Solubilité des éléments caractéristiques et fondamentaux des
eaux naturelles. Équilibres calcocarboniques des eaux. Matière
organique et consommation d'oxygène dans les eaux naturelles.

L'eau milieu. Les communautés biologiques des milieux
aquatiques. Perturbations liées aux activités humaines.
L'eutrophisation des lacs, modèles prévisionnels. Eau dans les
pays en développement. Recommandations suisses et
internationales pour la qualité des eaux.

Le lac dans un système hydrologique. Lac et atmosphère.
Advection à grande échelle et mélange dans un régime
turbulent à petite échelle. Stratification thermique. Modèle de
la thermoclone. Ondes de surface et ondes internes. Echange
de gaz entre l'air et le lac. Techniques de mesure in-situ.

OBJECTIVES
At the end of this course, the student should be able to evaluate the most important aspects concerning the quality of natural waters in view of aquatic life protection, agricultural and industrial use and human consumption. Water is treated considering its physicochemical properties, its capacities to be a compartment for biota and environmental hydraulic aspects of the “lake system”.

CONTENTS

The lake in a hydrological system. Lake and atmosphere. Large scale advection and turbulent mixing. Thermal stratification and the thermocline model. Surface waves and internal waves. Gas exchange between air and lake. Field measurement techniques.

FORME DE L’ENSEIGNEMENT: Cours ex cathedra et travaux pratiques

BIBLIOGRAPHIE: L. Sigg, Ph. Behra, W. Sturm : Chimie des milieux aquatiques, Dunod ed., polycopiés

LIAISON AVEC D'AUTRES COURS: Autres cours du module : Gestion intégrée des eaux, Traitement des eaux usées, Production et contrôle de l'eau potable

Préalable : Chimie Environnementale I et II

<table>
<thead>
<tr>
<th>FORME DU CONTROLE: Examen écrit</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>POUR L’ENSEMBLE DU MODULE :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DE CREDITS:</th>
<th>6 pour I et II</th>
</tr>
</thead>
</table>

SESSION D'EXAMEN: Eté

CONTRÔLE continu
OBJECTIFS
Acquisition des connaissances de base nécessaires à la conception, au dimensionnement et à la gestion des réseaux hydrauliques urbains. Eau potable, eaux de ruissellement, eaux usées.
Définition fonctionnelle et structurale des réseaux et des ouvrages annexes.

CONTENU
- Cadre général des réseaux hydrauliques urbains
 - Apports, demande, adduction, distribution, collecte, évacuation, rétention, restitution
- Aspects légaux et conceptuels
 - Bases légales, plans directeurs
 - Organisation politico-administrative
 - Urbanisme et environnement
- Conception et dimensionnement
 - Eau potable : du captage à la distribution
 - Eaux de surface : de la pluie à l’exutoire
 - Eaux usées : de la collecte à la restitution
- Gestion et maintenance des réseaux
 - Systèmes de financement
 - Contrôle, entretien, réfection, automation
 - Conservation cadastrale
- Ouvrages annexes
 - Bassins d’eaux pluviales et d’eau usées
 - Puits de chute, jonctions, bifurcation
 - Stations de pompage, réservoirs, ...

OBJECTIVES
Basic knowledge acquisition useful for concept, design and management of urban hydraulic networks.
Drinking water, drainage and waste water.
Functionality and structure of the networks and appurtenant works.

CONTENTS
- General frame of the urban hydraulic networks
 - Supply, demand, adduction, distribution, collection, evacuation, retention, restitution
- Legal and conceptual aspects
 - Laws and rules, management schemes
 - Policy organisation
 - Town-planning and environmental constraints
- Concept and design
 - Drinking water: from collection to distribution
 - Surface runoff: from rainfall to outlet
 - Waste water: from collection to restitution
- Networks management and maintenance
 - Financial management
 - Control, maintenance, repairing, automation
 - Cadastral survey
- Particular works
 - Stormwater detention basins
 - Drop shafts, junctions, bifurcations
 - Pumping stations, reservoirs, ...

FORME DE L’ENSEIGNEMENT: Cours ex cathedra et exercices

BIBLIOGRAPHIE: Polycopié + autres supports de cours

LIAISON AVEC D’AUTRES COURS:
Hydrologie et systèmes hydrauliques des milieux urbanisés I
Prealable: Hydrologie appliquée, Mécanique des fluides I, II
Hydraulique des ouvrages
Preparation pour: Diplôme

NOMBRE DE CREDITS: 6 pour I et II
SESSION D’EXAMEN: Été
Contrôle continu

FORME DU CONTROLE: Examen oral
OBJECTIFS

Connaître les principes des systèmes de navigation utilisés dans les applications des transports.

Comprendre l’architecture, les données de base et l’échange d’informations des systèmes de navigation.

Maîtriser l’évaluation des critères de performance de la navigation associée à un mode de transport.

CONTENU

Systèmes de navigation
- Caractéristiques
- Architecture des systèmes terrestres et spatiaux
- Principaux capteurs et leurs fonctions
- Analyse de la capacité des systèmes

Base de données pour la navigation
- Structure de données pour la navigation routière (Standard : GDF)
- Interaction entre système de navigation et données.
- Algorithmes de map-matching

Critères de performance pour les transports
- Principes d’intégrité, disponibilité, continuité
- Estimation de la précision

Application dans les transports
- Étude de cas appliqués à la navigation dans les transports terrestres (rail, route) et dans le transport aérien

OBJECTIVES

To learn the principles of navigation systems used in transport applications.

To understand the architecture, the data and the exchange of information of navigation systems.

To master the evaluation of the navigation system’s performance for a given mode of transportation.

CONTENTS

Navigation Systems
- Characteristics
- Architecture of land-based and space-based systems
- Navigation sensors
- Analysis of the capabilities of different systems

Databases for Navigation
- Data model for road navigation (Standard : GDF)
- Integration of navigation system with geodata.
- Map-matching algorithms

Performance Evaluation in Transportation
- Integrity, availability, continuity
- Evaluation of the precision

Applications in Transportation
- Case study of navigation for road, rail and air applications.
OBJECTIFS

Maîtriser la conception et l'évaluation des transformations de coordonnées.

Maîtriser les différentes techniques d'implantation et de contrôle en géotechnique, dans la construction et dans l'industrie.

Développer la collaboration entre géologues, ingénieurs civils et géodésiens pour la construction et la maintenance d'infrastructures.

CONTENU

Systèmes et cadres de coordonnées
- changement de système selon Gauss-Helmert
- modèles de transformation: similitude et affinité dans le plan et dans l'espace
- réseaux avec des positions ou des vecteurs GPS
- analyse des paramètres estimés
- application du logiciel LTOP

Interpolation
- signal et bruit
- fonctions de covariance
- compensation + interpolation = collocation
- logiciel TRANSINT

Géométrie
- rappels de statistique appliquée
- techniques de triangulation et de nivellement
- techniques d'orientation et d'alignement
- contrôles de verticalité
- chaîne automatique de mesure
- accessoires de la métrologie
- perturbations (réfraction géodésique, etc.)

Projet: analyse d'un dispositif d'auscultation d'ouvrage

OBJECTIVES

To master the design and the evaluation of coordinate transformations.

To master the different techniques for monitoring landslides, and for setting out buildings and machines.

To develop the collaboration between geologists, civil engineers and geodesists for the construction and maintenance of infrastructures.

CONTENTS

Coordinate systems and frames
- change of system as combined adjustment
- transformation models: similitude and affinity in 2-D and 3-D
- networks with GPS positions or vectors
- analysis of estimated parameters
- applications with the LTOP software package

Interpolation
- signal and noise
- covariance functions
- adjustment + interpolation = collocation
- TRANSINT software package

Geométrie
- recalls in applied statistics
- triangulation and levelling methods
- Orientation and alignment methods
- Verticity setting out and controls
- Automatic measuring systems
- Metrology facilities
- Disturbances (geodetical refraction, etc.)

Project: analysis of a deformation monitoring scheme

FORME DE L'ENSEIGNEMENT: Cours ex cathedra et exercices, partiellement en salle informatique

BIBLIOGRAPHIE: Polycopiés, exercices corrigés, mode d'emploi de logiciels

LIAISON AVEC D'AUTRES COURS: Analyse d'images

Préalable:
Positionnement et cartographie

Préparation pour:
travaux d'infrastructure, brevet fédéral d'ingénieur géomètre
OBJECTIFS

Connaître les caractéristiques et développer une maîtrise avancée des différentes technologies des SIG (typologie, design, architecture, paramétrisation, développement, algorithmes, évolution)

Être capable de sélectionner, concevoir et mettre en œuvre les solutions adaptées à un cas ou domaine d'applications. Connaître les acteurs et le marché des technologies SIG.

CONTENTS

The GIS market and actors
The geographic databases
Typology and understanding of GIS technologies
GIS software architecture
Interoperability, data exchange and data storage mechanisms
Building GIS applications
Understanding GIS algorithms

FORME DE L’ENSEIGNEMENT: Cours ex cathedra, exercices, projet, séminaires

NOMBRE DE CREDITS: 6 pour I et II

SESSION D’EXAMEN: Eté

Controle continu

FORME DU CONTROLE: Examen oral

OBJECTIVES

To know the characteristics and to develop a deep knowledge of various GIS technologies (GIS typology, design, architecture, customization, development, algorithms, evolution)

To be able to select, design and implement suitable GIS technologies for various applications. Understand the GIS market and know the key GIS actors.

CONTENTS

The GIS market and actors
The geographic databases
Typology and understanding of GIS technologies
GIS software architecture
Interoperability, data exchange and data storage mechanisms
Building GIS applications
Understanding GIS algorithms

FORME DE L’ENSEIGNEMENT: Cours ex cathedra, exercices, projet, séminaires

NOMBRE DE CREDITS: 6 pour I et II

SESSION D’EXAMEN: Eté

Controle continu

FORME DU CONTROLE: Examen oral

BIBLIOGRAPHIE: [Laurini R] Les bases de données en géomatique

Information Géographique et AT: Langages et interfaces des SIG

LIAISON AVEC D’AUTRES COURS: cours SIG du mineur géomatique

Préalable :

Préparation pour: Infrastructure de données géographiques
Mineur: 4. Géomatique

Cours: MANAGEMENT DE PROJETS SIG Lecture:

Enseignant: Prof. François Golay, SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>8</td>
<td></td>
<td>x</td>
<td></td>
<td>42</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

OBJECTIFS

OBJECTIVES

Voir page Web:
http://ssie.epfl.ch/plan_etude/sem7-9_04-05.php

CONTENU

CONTENTS

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

Préalable:
Preparation pour:

NOMBRE DE CREDITS: 2
SESSION D'EXAMEN: Eté
Contrôle continu
FORME DU CONTROLE:
Titre: ANALYSE D'IMAGES DU TERRITOIRE II
Title: SATELLITE POSITIONING II

Enseignants:
Prof. Otto Koelbl, SIE, Régis Caloz, chargé de cours SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

OBJECTIFS
Assimiler les méthodes d'extraction d'information des images aériennes et spatiales
Exploiter les méthodes de segmentation et de classification d'images pour la détermination de l'occupation du sol et d'indicateurs bio-physiques
Etablir les besoins de traitements d'images pour les études environnementales

OBJECTIVES
Learning methods for information retrieval from aerial and satellite images
Applying image segmentation and classification methods to land cover and bio-physical indicators determination
Defining the needs in image treatment for environmental studies

CONTENU
Caractéristiques spectrales des images
Inventaire des images actuellement disponibles
Propriétés de chaque bande selon le radiomètre
Image radar

Segmentation et classification par méthode interactive
Approche contour
 - Filtrage
 - Séparateur à vaste marge

Approche région
 - Principes
 - Divers algorithmes

Morphologie d'image

Applications
Zones urbaines
Biodiversité

CONTENTS
Spectral characteristics of images
Review of current images
Band specificities according to the sensor
Radar images

Segmentation and classification through interactive methods
Edge detection approach
 - Filtering
 - Support Vector Machine

Region growing approach
 - Principles
 - Algorithms

Image morphology

Applications
Urban areas
Biodiversity

FORME DE L'ENSEIGNEMENT: Cours basé partiellement sur la revue d'articles

BIBLIOGRAPHIE: Articles de revues

LIAISON AVEC D'AUTRES COURS:
Préalable : Télédétectection et traitement d'images
Analyse d'images du territoire I

Préparation pour: Mémoire master

NOMBRE DE CREDITS: 6 pour I et II

SESSION D'EXAMEN: été
Contrôle continu

FORME DU CONTROLE:
Examen oral
Mineur: 4. Géomatique

<table>
<thead>
<tr>
<th>Cours: REALITE VIRTUELLE</th>
<th>Lecture: VIRTUAL REALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: Prof. Otto Köbl, SIE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>8</td>
<td>x</td>
<td></td>
<td></td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Introduction aux techniques de la réalité virtuelle pour la visualisation de grands projets sous forme de scènes animées et application de ces techniques pour des études d'impact.

OBJECTIVES
Introduction to the techniques of virtual reality for visualization of great projects in the form of animated scenes and application of these techniques for impact studies.

CONTENU
- Introduction aux techniques de travail
- Les outils de base
 - traitement numérique des images vidéo
 - techniques de compression d'images
 - l'image statique
 - le film
 - les caméscopes
 - le son
- Les moyens de levés
 - scanning théodolite
 - photogrammétrie architecturale
 - localisation de la caméra (GPS, tracking théodolite)
- Modélisation et animation
 - animation d'objets
 - modélisation d'humanoïdes
 - techniques de traitement d'image (morphing)
 - les principaux logiciels (Softimage)
 - transfert de données
- Applications
 - études d'impact, par exemple : Alptransit, planification de lignes à haute tension, sécurité routière.

CONTENTS
- Introduction to the working techniques
- The basic tools
 - digital processing of video images
 - techniques of image compression
 - the static image
 - the film
 - the video cameras
 - the sound
- Means of survey
 - scanning theodolite
 - architectural photogrammetry
 - localization of the camera (GPS, tracking theodolite)
- Modeling and animation
 - objects animation
 - modeling of humanoids
 - techniques of image processing (morphing)
 - the main softwares (Softimage)
 - data transfer
- Applications
 - impact studies, for example : Alptransit, planning of high-voltage lines, road safety.

FORME DE L'ENSEIGNEMENT: Cours ex cathedra et exercices

BIBLIOGRAPHIE: Polycopié, recueil d'exercices corrigés, mode d'emploi de logiciels

LIAISON AVEC D'AUTRES COURS: Positionnement et cartographie

Préalable: Photogrammétrie

Préparation pour:

NOMBRE DE CREDITS: 2

SESSION D'EXAMEN: Été

Contrôle continu

FORME DU CONTROLE: Examen oral
OBJECTIFS

Le cours analysera quelques matériaux, thèmes et méthodes du projet urbain et territorial, du XIX siècle à nos jours. Ce cours mettra en lumière différentes stratégies de sélection et de composition des « matériaux » de la ville, en s’appuyant aussi bien sur la lecture des textes des urbanistes que sur l’interprétation de projets (contextuels/pragmatiques ou exemplaires/illustratifs).

En appelant matériaux « tout ce qu’on peut combiner » (M. Butor), nous partons de l’hypothèse que tout projet de transformation de la ville, du territoire ou de ses parties, découle nécessairement : 1) d’une simplification de la réalité, 2) de la sélection de quelques-unes de ses composantes, 3) de leur considération en tant que matériaux constitutifs de la ville et du projet, disponibles à assumer rôles, fonctions et significations différentes selon les séquences spatiales et temporelles différentes dans lesquelles ils sont inscrits. Il nous sera possible d’identifier différents styles du projet urbain et, en parallèle, différentes manières de penser et de représenter la ville moderne et la ville contemporaine environnementales.

CONTENU

Au cours des deux semestres, les cours théoriques seront groupés selon les thématiques suivantes :
- Manuels : textes qui développent une analyse de la ville, de ses composantes et de leurs règles de composition, de Camillo Sitte à Rem Koolhaas ;
- Le nouveau monde : la ville et le territoire américains vus comme l’autre » développement de la ville et du territoire européens ;
- Fondation et planification : déclinaisons de l’idéologie du plan ;
- Le parc et/ou la ville : une alternative qui peut déboucher sur une identité lorsque la ville devient elle-même un grand parc ;
- Recherches en cours : présentation d’une série de recherches en cours, portant sur les notions de densité, d’espace vide, de composition/non-composition et d’échelle.

FORME DE L’ENSEIGNEMENT : Cours théorique
BINBIOGRAPHIE : Donnée en début de cours
LIAISON AVEC D’AUTRES COURS :
Préalable : Télédétection et traitement d’images
Analyse d’images du territoire
Préparation pour : Mémoire master

OBJECTIVES

The course analyzes materials, themes and methods of both urban and territorial project from the 19th Century until today. It outlines different strategies in the selection and composition of urban materials by focusing on writings of urban planners and on the interpretation of projects (contextual/pragmatic or revealing/illustrious).

As materials are « everything we can combine » (M. Butor), we assume that any project of urban transformation, as well as territory or its parts, must be the result of: 1) a simplification of reality, 2) a selection of some of its components, 3) a consideration of these as materials shaping the city and the project as well as ready to assume various roles, functions and significances according to the different sequences of space and time in which they belong. We can then identify different styles in any urban project and at the same time different ways of thinking and representing the modern and contemporary city.

CONTENTS

Lasting two semesters, the theoretic courses are grouped according to the following topics:
- Handbooks : writings analyzing the city, its elements and its assembling rule, from Camillo Sitte to Rem Koolhaas.
- The new world: the American city and territory as the « other » development of the European one.
- To found and to plan: two inflexions of a plan ideology.
- The park and the city: an alternative potentially resulting in an identity when the city becomes a big park.
- Current researches: presentation of various current researches based on the notions of density, of empty space, of composition/non-composition and of scale.

FORME DE L’ENSEIGNEMENT : Cours théorique
BIBLIOGRAPHIE : Donnée en début de cours
LIAISON AVEC D’AUTRES COURS :
Préalable : Télédétection et traitement d’images
Analyse d’images du territoire
Préparation pour : Mémoire master

NOMBRE DE CREDITS : 3 pour I et II
SESSION D’EXAMEN : été
Contrôle continu
FORME DU CONTROLE :
Travail écrit
5. Développement territorial

Titre: ENAC : QUESTIONS D'HISTOIRES

Enseignant: Pierre Frey, AR

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales</th>
<th>Par semaine</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC, SIE, AR</td>
<td>8</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS

Familiariser les étudiantes et les étudiants avec une approche historique des ouvrages situés dans leur contexte.

OBJECTIVES

Make the students familiar with a historical approach of the structures, placed in their context.

CONTENU

Ce cours d'histoire se propose de placer les ouvrages du génie civil dans la perspective de la faculté ENAC. Il considère les actions entreprises par l'homme pour se situer dans son environnement et pour le modifier. Il abordera le thème suivant :

- Histoire des ouvrages dans le monde et en Suisse : les ponts, les retenues d'eau, les grands systèmes routiers, les aménagements hydrauliques et fluviaux. Concerne principalement les 18\(^{\text{e}}\), 19\(^{\text{e}}\) et 20\(^{\text{e}}\) siècles. Approche monographique de quelques grands pionniers : Maillart, Sarrasin, Hossdorf, Menn, Dufour.

CONTENTS

This course purposes to place the engineering structures in the prospect of the ENAC school. It will examine the actions taken by man to situate himself in his environment and to modify it. The course will take the following topic :

- History of structures all around the world and in Switzerland: the bridges, the dams, the big road systems, the hydraulic and fluvial developments. Concerns mainly the 18\(^{\text{th}}\), 19\(^{\text{th}}\), and 20\(^{\text{th}}\) centuries. Monograph approach to some of the great pioneers: Maillart, Sarrasin, Hossdorf, Menn, Dufour.

FORME DE L'ENSEIGNEMENT: Ex cathedra

BIBLIOGRAPHIE: Fournie pendant le cours

LIAISON AVEC D'AUTRES COURS:

Préalable :

Préparation pour:

NOMBRE DE CREDITS: 2

SESSION D'EXAMEN: Eté

Contrôle continu

FORME DU CONTROLE: Rédaction d'un exercice monographique historique relatif à un ouvrage du génie civil situé en Suisse et documenté par des archives accessibles aisément
OBJECTIFS

Les enjeux de la gestion foncière et leurs conséquences pour le développement territorial.

Les instruments, démarches et procédures du droit foncier.

Les apports de la gestion foncière pour la mise en œuvre des stratégies de développement territorial, l’organisation de partenariats public-privé pour la réalisation des projets et la garantie légale de montages financiers ad hoc.

CONTENU

Les différents types de démarches foncières et leurs apports pour la résolution des problèmes liés au développement territorial :
Savoir reconnaître les problèmes propres à la gestion foncière et choisir les démarches appropriées.

Les différentes formes d’association et de partenariats et leur particularités :
Identifier les facteurs qui déterminent la réussite de telles opérations en soulignant l’importance des facteurs humains, juridiques et économiques.

OBJECTIVES

The stakes of land management and their consequences for land use planning.

Tools and procedures of land management’s law.

The contributions of land management for the implementation of strategies and development plans, organisational aspects and partnership for the realisation of projects and their financing.

CONTENTS

Different kind of land management procedure and their contribution for solving problems related to land use planning :
Identification of mains problems related to land management and choice of suitable procedures.

Different kinds of association and partnership and their particularities,
Identifying the factors which determine the success of such operations, underlining the importance of human, legal and economic factors.

FORME DE L’ENSEIGNEMENT: Cours avec exemple de cas

BIBLIOGRAPHIE:

LIAISON AVEC D’AUTRES COURS: Aménagement du territoire

Préalable : Aménagements fonciers

Préparation pour:

NOMBRE DE CREDITS: 3

SESSION D’EXAMEN: Été

Contrôle continu

FORME DU CONTROLE:
Mineur: 5. Développement territorial

<table>
<thead>
<tr>
<th>Titre:</th>
<th>VILLE ET MOBILITE</th>
<th>Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant:</td>
<td>Vincent Kaufmann, AR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Voir page Web :

http://ssie.epfl.ch/plan_etude/sem7-9_04-05.php

CONTENU

FORME DE L'ENSEIGNEMENT: Cours avec exemple de cas

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS: Aménagement du territoire

Préalable : Aménagements fonciers

NOMBRE DE CREDITS: 2

SESSION D'EXAMEN: Eté

Conçtrôle continu

FORME DU CONTROLE:

Préparation pour:
OBJECTIFS
Maîtriser les concepts et les méthodes de la télématicque des transports de façon à être capable de mener des projets au niveau de la conception et de la réalisation dans ce domaine.

CONTENU
- Champ d'action de la télématicque des transports (caractéristiques et composants, gestion des systèmes, potentiel, enjeux et besoins).
- Les services et les systèmes de télématicque des transports (architecture générale, gestion des voies, gestion des déplacements, transports publics, informations sur le trafic, assistance à la conduite, gestion de flottes).
- Nature et gestion des données (nature et flux de l'information, base de données).
- Démarche d'étude et de mise en œuvre des services et systèmes (études de cas, étapes principales, critères d'évaluation).
- Éléments de théorie du trafic (variables caractéristiques, lois d'écoulement).
- Modèles et outils d'évaluation des systèmes de transport (apport des modèles, modèles de planification, modèles de simulation dynamique et de demande).
- Applications à l'aide d'un logiciel de microsimulation.
- Éléments sur les technologies clé (saisie de données, systèmes de communication, localisation et systèmes de navigation).
- Besoins et développements futurs.

OBJECTIVE
To control the concepts and the methods of the transports telematics in order to be able to lead projects to the level of the design and realization in this field.

CONTENTS
- Sphere of activity of the transports telematics (characteristics and components, management of the systems, potential, stakes and needs).
- The services and the systems of transports telematics (general architecture, management of ways, management of displacements, public transports, traffic information, driving assistance, management of fleet).
- Nature and management of the data (kinds and flows of information, data base).
- Study and implementation steps of the services and systems (case studies, principal stages, evaluation criterions).
- Elements of the traffic theory (characteristic variables, laws of flow).
- Models and tools for the transport systems evaluation (contribution of the models, models planning, models of dynamic simulation and request).
- Applications with a microsimulation software.
- Elements on key technologies (data entry, communication systems, localization and systems of navigation).
- Needs and future developments.

FORME DE L'ENSEIGNEMENT: Ex cathéda et intervenants extérieurs
NOMBRE DE CREDITS: 3

BIBLIOGRAPHIE: Polycopié et articles de conférence
SESSION D'EXAMEN: Été
Contôle continu

LIAISON AVEC D'AUTRES COURS:
PRÉALABLE REQUIS: Conception des voies de circulation, cours du tronc commun en transports
FORME DU CONTROLE: Examen oral
PRÉPARATION POUR: Projet de systèmes civils, diplôme pratique
Titre: UE C Aménagement urbain, mobilité et environnement

Enseignants: Jacques MACQUAT, Dr Martin SCHULER, Eduardo CAMACHO, chargés de cours AR

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 84</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR, SIE</td>
<td>7 ou 8</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>Par semaine: 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Cours: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Exercices: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Pratique:</td>
</tr>
</tbody>
</table>

OBJECTIFS

Etude d’une ville suisse, suivie de projets d’aménagements en collaboration avec les autorités, dans le but de trouver des solutions aux problèmes territoriaux actuels. Les groupes transdisciplinaires (architecte, ingénieur, géographe) choisissent une problématique et présentent une analyse et des réponses aux politiques et professionnels de l’aménagement de la ville à la fin du semestre.

Etude du développement historique et morphologique de la ville; population et emplois; économique, politique de l’habitat; déplacements (marche, vélo, skate inclus); équipements; rôle régional, cantonal. Des professionnels participent à l’UEC (interventions et conseil).

Les étudiants utilisent les instruments d’aménagement, les plans légaux en vigueur, se concentrent sur une échelle: locale (plan de quartier; espace public); urbaine (plan directeur des transport); ou régionale (Agenda 21; tourisme).

CONTENU

Cas d’étude: la Ville de Martigny (VS; 15.000 h.); au carrefour des Alpes (Suisse, France, Italie), dans ses contextes communals, régional et transfrontaliers. Son bassin d’emploi (50’000 h.) comprend 3 districts: Martigny, Entremont et une partie de St Maurice.

Les étudiants aborderont les enjeux d’aménagement et développement territorial tels que: le rôle de Martigny dans l’espace Mont-Blanc (triangle Martigny-Aoste-Chamonix); la relation et le développement Martigny-Aoste (liaison ferroviaire); le Plan directeur de la Ville de Martigny; la Troisième Correction du Rhône; un nouveau stade de Foot; les friches industrielles (ancienne usine d’aluminium); la valorisation de l’ensemble des sites Romains de la ville; divers plans de quartiers...

OBJECTIVE

Study a Swiss city, collaborating with its town-planning authorities in order to solve nowadays territorial issues. Transdisciplinary groups of students (architects, engineers, geographers) work together on one chosen project thematic; the final proposal gives an analysis and answers to these issues. Students act as urban planning advisers, showing their project to the city authorities at the end of the semester.

Study of a city: historical and morphological development; population and workforce evolution; dwelling and transportation (including cycling, walking, skating) politics; infrastructures, environmental issues; role at a regional and district level. Professionals belonging to these fields participate into the UEC (conferences; advice to groups) Groups learn about local and regional planning regulation system (master plan; communal plan); focus on one scale in their project: local (community plan; public space), urban (pedestrian transportation plan) or regional (Agenda 21; tourism).

CONTENÚ

Cas de estudio: la Ciudad de Martigny (VS; 15.000 h.), al carrefour de los Alpes (Suiza, Francia, Italia), en sus contextos comunales, regional y transfronterizos. Su ámbito laboral (50’000 h.) incluye 3 distritos: Martigny, Entremont y una parte de St Maurice.

Los estudiantes abordarán los enjuicios de aménagement y desarrollo territorial tales como: el papel de Martigny en el espacio Mont-Blanc (triángulo Martigny-Aoste-Chamonix); la relación y el desarrollo Martigny-Aoste (liaison ferroviaria); el Plan directeur de la Ciudad de Martigny; la Tercera Corrección del Rhône; un nuevo estadio de Foot; las friches industriales (antigua fábrica de aluminio); la valorización de la totalidad de las sitios Romanos de la ciudad; diversos planes de barrios...

CONTENT

Case study: the city of Martigny (VS; 15’000), Alps crossroad (Switzerland, France, Italy) and its communal, regional and international contexts. Its region (50’000) includes 3 districts (Martigny, Entremont, St Maurice partially).

Students will work on planning projects such as: Martigny’s role in Mont Blanc’s territorial space (Martigny-Aoste-Chamonix triangle); martigny-Aoste relation and development (railway); the Town Plan Planning; the Rhône’s third plan; a new football field; industrial waste land; Roman sites requalification; several local plans;...

Forme de l'enseignement: cours, interventions et atelier
Bibliographie: comprise dans un polycopié distribué en début de semestre
Liaison avec d'autres cours:
Préalable requis:
Préparation pour:

Nombre de crédits: 5
Session d'examen: Été
Forme du contrôle: rendu d’un mémoire et poster et défense du projet devant les autorités municipales
<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 84</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Par semaine: 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Voir page Web :
http://ssie.epfl.ch/plan_etude/sem7-9_04-05.php

CONTENU

FORME DE L’ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D’AUTRES COURS:

Préalable :

Préparation pour:

NOMBRE DE CREDITS: 5

SESSION D’EXAMEN: Eté

FORME DU CONTROLE:
9e semestre
Mineurs :
1. Gestion de la pollution et écologie industrielle
2. Biotechnologies environnementales

<table>
<thead>
<tr>
<th>Cours: TRAITEMENTS THERMIQUES DES DECHETS INDUSTRIELS : Techniques d'épuration des fumées II</th>
<th>Lecture: THERMAL TREATMENT OF INDUSTRIAL WASTE: Smokestacks clean up's techniks II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: Prof. Hubert van den Bergh, SIE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>9</td>
<td></td>
<td>X</td>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Apprendre et comprendre les méthodes et bases du traitement des déchets industriels et épuration des fumées. Des exemples illustrent le cours.
Polluants contenus dans les fumées:
CO, particules, HCl, HF, Sox, Nox, As, Ca, Hg, Ni, Pb, dioxines, COV, composés bromés et iodés.

OBJECTIVES
Learn and understand the methods and fundamentals of the treatment of industrial waste and smokestacks cleanup. Examples of modern waste treatment are given.
Pollutants in smokestacks:
CO, particles, HCl, HF, Sox, Nox, As, Ca, Hg, Ni, Pb, dioxines, VOC's, bromides and iodides.

CONTENU
- Pyrolyse à basse, moyenne et haute température
- Procédés d’oxydation humide
- Vapocraquage
- Traitements par bains
- Traitements par micro-ondes
- Dépoussiérage
- Epuration par voie sèche
- Epuration par voie semi-humide
- Epuration par voie humide
- Epuration par voie combinée
- Epuration par condensation
- Réduction non catalytique + réduction catalytique
- Re-combustion
- Adsorption
- Traitement des COV

CONTENTS
- Pyrolysis at low, medium and high temperature
- Wet oxidation processes
- Cracking
- Immersion treatments
- Microwave treatments
- Particle filtration
- Dry purification
- Semi-wet purification
- Wet purification
- Combined purification
- Condensation
- Catalytic + non-catalytic reduction
- Re-combustion
- Adsorption
- Treatment of VOC's

FORME DE L'ENSEIGNEMENT: Cours ex cathedra

BIBLIOGRAPHIE: Polycopiés

LIAISON AVEC D'AUTRES COURS:

Préalable : Chimie appliquée, météorologie, atmosphère et climat, photochimie atmosphérique

Préparation pour:

NOMBRE DE CREDITS: 5 pour I et II

SESSION D'EXAMEN: Printemps

Contrôle continu

FORME DU CONTROLE: Examen oral
<table>
<thead>
<tr>
<th>COURS: ANALYSE DES FLUX DE MATIERES</th>
<th>LECTURE: MATERIAL FLOW ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignant: Suzan Kytzia, ETHZ</td>
<td></td>
</tr>
<tr>
<td>Section(s): SIE</td>
<td></td>
</tr>
<tr>
<td>Semestre</td>
<td>Oblig.</td>
</tr>
<tr>
<td>9</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIFS
Ce cours a pour objectif de permettre aux participants de comprendre et d'avoir utilisé l'"Analyse des flux de matière" (AFM), en tant qu'outil quantitatif d'analyse de système appliqué
- à l'écologie des systèmes industriels,
- à la consommation durable,
- ainsi qu'au développement et à la gestion des ressources régionales.

CONTENU
Le cours sera composé des principales parties suivantes:

- **Metabolisme de l'antroposphère (6h)**
 Phénoménologie des flux de matière
 Concepts nationaux et régionaux des activités humaines

- **Analyse des flux de matière à l'échelle régionale et nationale (14h)**
 - Approche bottom-up: analyse régionale des flux de matière et de substance (selon Baccini et al.)
 - Approche to-down: comptabilisation des flux de matière (selon EUROSTAT)
 - Relation à d'autres outils: autres approches MFA, analyse Input-Output et analyse du cycle de vie-inventaires

- **Indicateurs des flux de matière et prise de décision (8h)**
 - Concepts d'efficience et d'autonomie
 - Indicateurs régionaux et nationaux du management des flux de matière
 - Application des différents outils à la prise de décision

OBJECTIVES
The course aims to enable the participants to
- Understand Material Flow Analysis (MFA) as a tool for quantitative system analysis, in the context of the ecology of industrial systems, of sustainable consumption as well as of regional development.
- Use static, linear material flow models to analyse resource management options on regional scale.

CONTENTS
The course builds up on the previous course on Ecodesign and Ecology of Industrial Systems. It will be composed of series of presentations and exercises, including:

- **Metabolism of the anthroposphere (6h)**
 Phenomenology of material flow systems and regional and national scale; concept of human activities.

- **Material flow analysis on regional and national scale (14h)**
 Bottom up approach: Substance and Material Flow Analysis on regional scale (according to Baccini/Brunner 1991, Baccini and Bader 1996 and Brunner/Rechberger 2004);
 Top down approach: Material Flow Accounting (according to EUROSTAT);
 Related tools: Other MFA approaches; Input Output Analysis and Life Cycle Inventories.

- **Material Flow Indicators and decision making (8h)**
 Concepts of Efficiency and Self-Sufficiency;
 Indicators for Material Flow Management on regional and national scale
 Application of different tools in decision making (indicators, models, scenarios etc.).

FORME DE L'ENSEIGNEMENT: Cours ex cathedra et exercices

BIBLIOGRAPHIE: Notes polycopiées

LIAISON AVEC D'AUTRES COURS: Eco-conception et écologie des systèmes industriels

NOMBRE DE CREDITS: 2

SESSION D'EXAMEN: Printemps

CONTRÔLE CONTINU:

FORME DU CONTROLE:
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>9</td>
<td></td>
<td>x</td>
<td></td>
<td>Par semaine: 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 4</td>
</tr>
</tbody>
</table>

OBJECTIFS

Connaître les risques engendrés par des émissions polluantes, en combinant les aspects de transport des polluants dans l'environnement, d'exposition et d'effet toxiques (étudiés dans les cours précédents).

Maîtriser les méthodes d'analyse de risques sur les écosystèmes et sur l'homme.

Avoir appliqué les méthodes sur des études de cas, en particulier à l'aide d'un logiciel.

CONTENU

Le cours s'appuiera sur les cours de base sur la propagation et l'impact de polluants pour faire la synthèse de ces aspects et méthodes dans l'évaluation de risques. Il sera composé d'une série d'exposés et d'exercices pratiques, comprenant les éléments suivants:

- **Introduction**
 - Notions et niveaux de risque communément acceptés

- **Risques sur les écosystèmes**
 - L'approche PEC/PNEC, distribution de sensibilité des espèces
 - L'évaluation comparative des risques liés aux substances chimiques (HC50, risques en Analyse du cycle de vie)
 - Les bases de donnée existantes
 - Risque des mélanges et de classes de substances particulières (métaux, pesticides, etc.)
 - Analyse de risque d'échantillons environnementaux
 - Études de cas et exercices, en particulier à l'aide d'un logiciel de risque (risque de pesticides, etc.)

- **Risque sur l'homme**
 - Le quotient de risque
 - Risque comparatifs sur l'homme
 - Analyse et propagation des incertitudes
 - Analyses coûts-bénéfices

*Le cours II s'effectuera en option, sous forme d'un projet de recherche de 56 heures, sur un thème proposé par les laboratoires impliqués.

*Course II can be optionally taken as a research project, of 56 hours, on a subject proposed by the involved laboratories.

OBJECTIVES

Understand the risks linked to the emissions in the environment of chemical substances, combining assessment methods of fate, exposure and toxic effects.

Master the methods assessing risk on ecosystem and human health.

Have applied the studied methods on practical case studies, also using a software.

CONTENTS

This course builds up on the previous courses on propagation and impacts of pollutants, synthesizing these different concepts and approaches in risk assessment methods. It will be composed of series of presentations and exercises, including:

- **Introduction**
 - Risk concepts and acceptable risks

- **Risks on ecosystems**
 - The PEC/PNEC approach (Predicted Environmental Concentration/Predicted No Effect Concentration), species sensitivity distributions
 - Assessment of comparative risks of chemical substances (HC50, risks for Life cycle Assessment) & databases
 - Risks of mixtures and of specific chemical classes (metals, pesticides, etc.)
 - Risk analysis of environmental samples
 - Case studies and exercises, using software (risk of pesticides, etc.)

- **Risks on Human Health**
 - Risk quotient
 - Comparative risks on human health
 - Uncertainty analysis and propagation
 - Cost-benefit analysis

FORME DE L’ENSEIGNEMENT: Projet

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

- Préalable : Analyse et modélisation du risque I

NOMBRE DE CREDITS: 4 pour I et II

SESSION D'EXAMEN: Printemps
- Contrôle continu

FORME DU CONTROLE:
- Projet
Mineur : 1. Gestion de la pollution et écologie industrielle

Cours: **GESTION REGIONALE DURABLE ET INDICATEURS**

Enseignant: Peter Knoepfel, IDHEAP

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>9</td>
<td></td>
<td>x</td>
<td></td>
<td>28</td>
<td>2</td>
</tr>
</tbody>
</table>

Cours	1
Exercices	1
Pratique	0

OBJECTIFS

Voir page Web :
http://ssie.epfl.ch/plan_etude/sem7-9_04-05.php

CONTENU

OBJECTIVES

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

Préalable :

Préparation
pour:

NOMBRE DE CREDITS: 2

SESSION D'EXAMEN: Printemps

Contrôle continu

FORME DU CONTROLE:
Mineur : 1. Gestion de la pollution et écologie industrielle

Titre: PROJET ECOLOGIE INDUSTRIELLE OU STAGE

Title: PROJECT INDUSTRIAL ECOLOGY OR INDUSTRIAL TRAINING PERIOD

Enseignants: Prof. Olivier Jolliet, SIE, Suren Erkman, chargé de cours EPFL

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales</th>
<th>Par semaine</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>9</td>
<td></td>
<td>X</td>
<td></td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

OBJECTIFS
Avoir appliqué les méthodes d'écologie industrielle au travers d’un projet de recherche si possible en entreprise

OBJECTIVES
Apply methods of industrial ecology in a small research project

CONTENU
Réalisation d'un projet d'écologie industrielle, si possible en entreprise. Etablissement d'un système de management environnemental, réalisation d'une analyse des flux de matière, d'une analyse du cycle de vie, d'une éco-conception ou d'une modélisation de système industriel.

Possibilité de faire reconnaître au travers de 4 crédits un stage industriel supervisé (fortement encouragé)

CONTENTS
Application to an industrial case study of one of the industrial ecology approaches (Life Cycle Assessment, Material Flow Analysis, Ecodesign, industrial metabolism or Environmental Management System).

This semester project could also be advantageously carried out within an industrial "practicum" (industrial training period)

FORME DE L'ENSEIGNEMENT: Projet ou stage en entreprise

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

Préalable : Méthode d'écologie industrielle dans le domaine du projet (système de management environnemental ou analyse des flux de matière, analyse du cycle de vie, éco-conception et systèmes industriels)

Préparation pour:

NOMBRE DE CREDITS: 2

SESSION D'EXAMEN: Printemps
Contrôle continu

FORME DU CONTROLE:
Examen oral et rapport
OBJECTIFS
Acquérir les bases du management industriel des coûts et savoir définir une stratégie environnementale en industrie.
Être en mesure d'établir un système de management environnemental en entreprise.
Savoir quantifier les impacts environnementaux d'une entreprise.

OBJECTIVES
Understand the basis of industrial cost management and be able to define environmental industrial strategies.
Be able to establish an Environmental Management System.
Know how to quantify the life cycle performances of a company.

CONTENTS
Industrial Cost management and environmental strategies
Fundamentals of business administration
Environmental policy & strategy
Conventional & green accounting
Life Cycle Costing & Life Cycle Management

Environmental management systems:
EMS and ISO 14000 / 9000. Total Quality Management (TQM) Project Management

Quantification of company environmental performances and key issues
Quantify environmental impacts of companies for an efficient EMS. experiences on service and production companies

Ecolabel and Environmental Product Declarations (EPD)

FORME DE L'ENSEIGNEMENT: Cours ex cathedra, exercices et utilisation de logiciels

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS: Mineur écologie industrielle

Préalable :

Préparation pour : Projet d'écologie industrielle

NOMBRE DE CREDITS: 5

SESSION D'EXAMEN: Printemps
Contrôle continu

FORME DU CONTROLE: Examen oral et rapport
MINEUR : 2. Biotechnologies environnementales

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales:</th>
<th>Par semaine:</th>
<th>Cours</th>
<th>Exercices</th>
<th>Pratique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

OBJECTIFS
Savoir dimensionner les biosystèmes microbiens appliqués aux traitements biologiques des effluents et des déchets.
Acquérir les méthodes de mesure et de régulation indispensables au suivi et au contrôle informatisé des bioprocédés de l'environnement.
Concevoir et appliquer des modèles mathématiques à la simulation et à la conduite optimale des bioprocédés de l'environnement.

CONTENU

Biosystèmes continus homogènes
- Paramètres du procédé et estimation des variables d'état.

Biosystème continu avec recyclage de biomasse ou d'effluent
- Application au traitement des eaux usées par boues activées.
- Biosystèmes continus hétérogènes
- Réacteurs pistons, batch séquentiel et réacteurs à membrane.
- Lits bactériens, disques et filtres biologiques.
- Évaluation et comparaison des performances.
- Exemples d'application au traitement des eaux usées et à la digestion anaérobie des matières organiques.

Mesures et contrôle des bioprocédés
- Principes et techniques de mesure. Boucles de régulation.
- Régulateurs et automates programmables.
- Modélisation des bioprocédés de l'environnement. Principes de modélisation. Types et structures de modèle.
- Établissement des modèles conceptuel et mathématique.
- Identification des paramètres et étude de sensibilité.
- Choix et application du logiciel de simulation.
- Modèle mathématique avancé des boues actives.
- Modèle mathématique avancé de la digestion anaérobie.

OBJECTIVES
Be able to design microbial biosystems applied to the biological treatment of effluents and wastes.

Acquire the measurement and control techniques which are necessary for the follow-up and for the computer control of environmental bioprocesses.

Comprehend and apply mathematical models for the simulation, design and optimal control of environmental bioprocesses.

CONTENTS

Continuous homogeneous biosystems
- Chemostat theory. Material balances. Steady state.
- Process parameters and state variables estimation.
- Quantitative study of the chemostat. Influence of the dilution rate.
- Continuous biowaste with biomass or effluent recycling.
- Application to activated sludge wastewater treatment.

Continuous heterogeneous biosystems
- Plug-flow, sequencing batch and membrane bioreactors.
- Trickling filters, biofilters and biological contactors.
- Efficiency evaluation and comparison.
- Application examples for wastewater treatment and the anaerobic digestion of organic wastes.

Measurement and control of bioprocesses
- Principles and techniques of measurement. Control loops.
- Regulators and programmable robots.

Modelling of environmental bioprocesses
- Modelling principles. Model types and structures.
- Establishment of the conceptual and mathematical models.
- Parameters identification and sensitivity study.
- Choice and application of the simulation software.
- Advanced mathematical model for activated sludge.
- Advanced mathematical model for anaerobic digestion.

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE: Notes de cours polycopiées et documents web

LIAISON AVEC D'AUTRES COURS:

- Préadable : Génie des procédés
- Préparation pour : Mineur en Biotechnologie environnementale

NOMBRE DE CREDITS: 6 pour I et II

SESSION D'EXAMEN: Printemps
- Contrôle continu

FORME DU CONTROLE: Examen écrit
| Mineurs : | 2. Biotechnologies environnementales
3. Ingénierie des eaux, du sol et des écosystèmes |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Titre:</td>
<td>REMEDIATION DES SOLS ET DES NAPPEES II</td>
</tr>
<tr>
<td>Title:</td>
<td>REMEDIATION OF SOILS AND AQUIFERS II</td>
</tr>
</tbody>
</table>
| **Enseignants:** | Prof. Christof Holliger, SIE
Dr Jean-Paul Schweitzer, Eric Sauberli, chargés de cours SIE |
| **Section (s)** | Semestre | Oblig. | Option | Facult. | **Heures totales:** 28 |
| SIE | 9 | X | | | Par semaine: 2
Cours 2
Exercices 0
Pratique 0 |

OBJECTIFS
- comprendre et savoir appliquer les différentes techniques physico-chimiques, chimiques et biologiques pour la remédiation des sols et des nappes
- connaître la démarche globale pour la sélection et la mise en œuvre d’une technique de traitement
- pouvoir définir une stratégie d’intervention pour une solution effective des problèmes

OBJECTIVES
- understand and being able to apply the different physico-chemical, chemical, and biological techniques to remediate soils and aquifers
- knowing the global approach for the selection and application of a treatment process
- being able to define an intervention strategy for an effective solution

CONTENU
Techniques de remédiation
- méthodes physiques par évacuation
- méthodes physiques par piègeages
- méthodes chimiques
- méthodes thermiques
- méthodes biologiques

Le choix d'une filière de décontamination
- critères techniques
- critères économiques
- le diagnostic environnemental

Evaluation du procédé de traitement
- vérification au laboratoire
- vérification du potentiel sur site
- analyse quantitative et qualitatives sur site

Législation en ce qui concerne les sites contaminés

CONTENTS
Remediation techniques
- physical methods by evacuation
- physical methods by trapping
- chemical methods
- thermal methods
- biological methods

Choice of a decontamination process
- technical criteria
- economical criteria
- environmental diagnosis

Evaluation of the treatment process
- laboratory studies
- pilot-scale tests on site
- quantitative and qualitative analysis on site

Legal aspects concerning contaminated sites

FORME DE L’ENSEIGNEMENT: Cours ex cathedra et exercices

BIBLIOGRAPHIE: Notes de cours polycopiés et documents web

LIAISON AVEC D'AUTRES COURS:
Préalable : Biotechnologie environnementale II
Préparation pour: Mineur en Biotechnologie environnementale

NOMBRE DE CREDITS: 6 pour I et II

SESSION D'EXAMEN: Printemps
Contrôle continu

FORME DU CONTROLE: Examen oral
Titre: Traitement des eaux usées urbaines II

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>9</td>
<td>X</td>
<td></td>
<td></td>
<td>Par semaine: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS
- Assimiler les principes de la (bio)ingénierie appliquées aux traitements des eaux usées.
- Acquérir les méthodes et techniques applicables à l'élimination des polluants organiques et des nutriments (azote et phosphore) des eaux usées.
- Concevoir et dimensionner les ouvrages d'une station d'épuration et les biosystèmes d'épuration à boues activées.

CONTENU
Les eaux résiduaires urbaines
Caractéristiques, composition, variabilité, paramètres, normes.

Principes de traitement de la pollution organique
Structure, biologie, maladies et décanalisation des bioflocs.
Boues activées, lagunes, étangs et chenaux d'oxydation.

Stations d'épuration à boues activées
Principes de fonctionnement et diagrammes de traitement.
Paramètres de traitement et opérations unitaires.
Configuration des boues activées.
Dimensionnement et conduite rationnelle des ouvrages.

Systèmes de traitement à biomasse immobilisée
Formation, croissance et caractéristiques des biofilms.
Transfert de masse, diffusion, gradients de concentration.
Technologie des lits bactériens, disques et filtres biologiques.

Méthodes de dimensionnement et d'exploitation des ouvrages.
Systèmes de traitement pour des petites collectivités
Les différentes techniques de traitement
Les critères de choix pour un système de traitement
Elimination des nutriments
Les processus de l'élimination biologiques et chimiques de l'azote et du phosphore
Les installations pour l'élimination de l'azote et du phosphore
Visites techniques de systèmes d'épuration

OBJECTIVES
- Understanding the basic (bio)engineering principles for municipal wastewater treatment.
- Acquisition of methods and techniques for organic pollutants and nutrients (nitrogen and phosphorous) removal from wastewater.
- Conception and design of wastewater plant facilities and of activated sludge biological treatment systems.

CONTENTS
Municipal wastewater
Characteristics, composition, variability, parameters, norms.

Principles of organic pollutants removal
Structure, biology, bulking and settling capacity of bioflocs.
Activated sludge, lagoons, oxidation ponds and ditches.

Activated sludge wastewater treatment plants
Operational principles and process diagrams.
Process parameters and unit operations.
Configurations of activated sludge processes.
Design and rational operation of the treatment facilities.

Immobile biomass treatment systems
Formation, growth and characteristics of biofilms.
Mass transfer, diffusion, concentration gradients.
Technologies of trickling filters, biofilters and rotating biological contactors. Design and operational methods.

Treatment Systems for small communities
The different treatment processes
The criteria of choice for a certain treatment process
Elimination of nutrients
The microbial and chemical processes for the removal of nitrogen and phosphorus from wastewater
The different installations for the removal of nitrogen and phosphorus
Technical visits of wastewater treatment plants

FORME DE L'ENSEIGNEMENT:
Cours ex cathedra, exercices et projets

BIBLIOGRAPHIE:
Notes de cours photocopiables et documents web

LIAISON AVEC D'AUTRES COURS:
Préalable : Génie des procédés

Préparation pour: Génie et modélisation des bioprocédures de l'environnement

NOMBRE DE CREDITS:
6 pour I et II

SESSION D'EXAMEN:
Printemps
Contrôle continu

FORME DU CONTROLE:
Examen oral
Titre: GESTION DU REGIME HYDRIQUE DES SOLS II
Lecture: SOIL WATER REGIME MANAGEMENT II

<table>
<thead>
<tr>
<th>Enseignant:</th>
<th>Prof. André Mermoud, SIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section (s)</td>
<td>SIE</td>
</tr>
<tr>
<td></td>
<td>Semestre: 9</td>
</tr>
<tr>
<td></td>
<td>Oblig. x</td>
</tr>
<tr>
<td></td>
<td>Facult.</td>
</tr>
<tr>
<td></td>
<td>Heures totales: 28</td>
</tr>
<tr>
<td></td>
<td>Par semaine: 2</td>
</tr>
<tr>
<td></td>
<td>Cours: 0</td>
</tr>
<tr>
<td></td>
<td>Exercices: 0</td>
</tr>
<tr>
<td></td>
<td>Pratique: 2</td>
</tr>
</tbody>
</table>

OBJECTIFS

Assimiler les principes théoriques nécessaires à la mise en œuvre de techniques destinées à corriger le régime hydrique des sols souffrant d'un manque d'eau (irrigation) ou d'un excès d'eau (assainissement). Etre capable de concevoir, dimensionner, réaliser et gérer les ouvrages d'irrigation et de drainage des sols agricoles de nature à minimiser les impacts sur l'environnement.

OBJECTIVES

To acquire basic elements required to implement appropriate techniques in order to improve the water regime of soils affected by a water deficit (irrigation) or by excess water (drainage).

To be able to plan, design and manage irrigation and drainage systems of agricultural lands, while minimizing environmental impacts.

CONTENU

Méthodes et techniques d’irrigation
- technologie et bases de dimensionnement des systèmes d'irrigation par gravité, aspersion ou micro-irrigation
- conception du réseau d'aménée et de distribution de l'eau
- impacts des réseaux d’irrigation

Assainissement des sols agricoles
- drainage de surface
- drainage de subsurface : principes de calcul de l’écartement des drains, caractéristiques géométriques des drainages, modalités de conception d’un réseau
- exécution et entretien des réseaux de drainage
- drainage et irrigation
- assainissement et environnement
- zones de transition

Elaboration d'un avant projet de drainage ou d'irrigation

CONTENTS

Irrigation
- technical aspects and design procedures of surface, sprinkler and trickle irrigation systems
- design of the conveyance and distribution systems
- impacts of irrigation systems

Drainage of agricultural lands
- surface drainage
- subsurface drainage: estimation of drain spacing, geometrical characteristics of drainage systems, planning and design of drainage systems
- construction and maintenance of drainage systems
- drainage and irrigation
- environmental impacts of drainage systems
- buffer zones

Elaboration of a drainage or irrigation pilot study

FORME DE L'ENSEIGNEMENT: Cours, projet
BIBLIOGRAPHIE: Cours polycopiés
LIAISON AVEC D'AUTRES COURS:
- Préalable : Hydraulique, Hydrologie, Physique du sol, Pédologie
- Préparation pour:

NOMBRE DE CREDITS: 4 pour I et II
SESSION D'EXAMEN: Printemps
Contrôle continu
FORME DU CONTROLE:
<table>
<thead>
<tr>
<th>OBJECTIFS</th>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apprendre à l'étudiant les concepts et principes de gestion des eaux de surface et souterraines compte tenu de la ressource, de la demande et d'autres contraintes d'ordre technique, socio-économique et environnementale.</td>
<td>Teach the student the concepts and principles of surface and groundwater management taking into account the resource, the demand and other constraints of technical, socio-economical and environmental order.</td>
</tr>
<tr>
<td>Décrire et savoir utiliser les principes et les méthodes de choix et d'optimisation pour la gestion</td>
<td>Describe and know how to use the principles and methods of choice and optimisation tools for management</td>
</tr>
<tr>
<td>Présenter et décrire les ouvrages et aménagements structuraux et non-structuraux</td>
<td>Present and describe structural and non-structural works and measures</td>
</tr>
<tr>
<td>Rendre l'étudiant sensible aux effets d'une gestion des ressources mal adaptée</td>
<td>Sensitize the student to the effects of not well adapted resources management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTENU</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspects introductifs liés à la gestion des eaux de surface et des eaux souterraines</td>
<td>Introductive aspects to surface water and groundwater resources management</td>
</tr>
<tr>
<td>Méthodes d'évaluation, de choix et d'optimisation</td>
<td>Methods for evaluation, choice and optimisation</td>
</tr>
<tr>
<td>Spécificités de la gestion des eaux de surface</td>
<td>Specificities of surface water management</td>
</tr>
<tr>
<td>Spécificités de la gestion des eaux souterraines</td>
<td>Specificities of groundwater resources management</td>
</tr>
</tbody>
</table>

Intégration des méthodes et techniques au travers d'un exercice de semestre se déroulant en continu durant le semestre.
OBJECTIFS

- connaître les principales sources de données spatialisées pertinentes en Suisse, en Europe et dans le monde.
- savoir définir le contenu, la structure et les fonctionnalités attenues d’un SIG de gestion des eaux.
- connaître les principales applications existant dans ce domaine et savoir les utiliser.

CONTENU

Identification des besoins
- Données « métier » et missions
- Fonctionnalités attendues

Modélisation des données
- Modélisation conceptuelle : aspects quantité et qualité des eaux
- Outils de modélisation conceptuelle et évaluation de modèles existants

Types, sources et acquisition des données
- Approche générale
- Disponibilité des données en Europe et en Suisse

Applications spécifiques et aspects techniques
- Délimitations et caractérisation de bassins versants
- Analyse de réseau, orientation des écoulements
- Topologie réseau, segmentation dynamique
- Analyses hydrauliques et hydrologiques
- ...

OBJECTIVES

- knowing the main relevant spatial data sources in Switzerland, Europe and in the World.
- being able to define the content, structure and expected functionalities of a water management oriented GIS.
- knowing the main existing application in this field and having some experience of their use.

CONTENTS

Needs Assessment
- Operational data and tasks of water management
- Expected functionalities

Data Modelling
- Conceptual modelling : water quality and quantity
- Data modelling tools and evaluation of existing models

Data Types, Sources and Acquisition
- General approach
- Data availability in Europe and in Switzerland

Specific Applications and Technical Aspects
- Watershed delineation and characterisation
- Network analysis, flow orientation
- Network topology, dynamic segmentation
- Hydraulic et hydrological analyses
- ...

FORME DE L’ENSEIGNEMENT: Cours ex cathedra et exercices

BIBLIOGRAPHIE: Notes de cours polyçopiés et documents web

LIAISON AVEC D’AUTRES COURS: SIG pour l’environnement

NOMBRE DE CREDITS: 4

SESSION D’EXAMEN: Printemps

CONTRÔLE CONTINU

FORME DU CONTRÔLE:
3. Ingénierie des eaux, du sol et des écosystèmes

ECOLOGIE NUMERIQUE NUMERICAL ECOLOGY

Prof. Alexandre Buttler, SIE, François Gillet, chargé de cours SIE

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>H. totales: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>9</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Par semaine:
- Cours 2
- Exercices 1
- Pratique 0

OBJECTIFS
- Initiation à l'analyse et à la modélisation des données écologiques multidimensionnelles
- Choix critique des méthodes et intégration de celles-ci dans un plan de recherche
- Préparation aux travaux de recherche personnels
- Utilisation de logiciels spécifiques (CANOCO, librairies R)

OBJECTIVES
- Introduction to multivariate data analysis and modelling
- Critical choice of methods and their integration in a research planning
- Preparation to personal research activities
- Use of specific software (CANOCO, R libraries)

CONTENU
1. Descriptiveur biologiques et environnementaux, données multidimensionnelles, codage et transformations.
2. Mesures de ressemblance et de dépendance, matrice d'association.
3. Analyse des discontinuïtés : les techniques de groupement.
4. Arbres de régression et de classification.
5. Analyse de gradient : les techniques d'ordination en espace réduit.
6. Analyse directe de gradients : ordinations sous contrainte.
7. Tests statistiques d'hypothèses pour réponses multivariées.
8. Structure spatiale et autocorrélation.

CONTENT
1. Biological and environmental descriptors, multidimensional data, coding and transformation.
2. Resemblance and dependence measures, association matrices.
4. Regression and classification trees.
5. Gradient analysis: ordination techniques in reduce space.
7. Statistical tests for multivariable responses.
8. Spatial structure and autocorrelation.

FORME DE L'ENSEIGNEMENT:
Cours et exercices sur ordinateur

BIBLIOGRAPHIE:

NOMBRE DE CREDITS: 3

SESSION D'EXAMEN:
Printemps, contrôle continu

FORME DU CONTROLE:
Oral, 30 min.

.Owner: 3. Ingénierie des eaux, du sol et des écosystèmes

<p>| Préalable requis: | Probabilité et statistique, MA, sem. 3+4. Statistiques environnementales, SIE, sem. 7. Écologie des écosystèmes et du paysage, SIE, sem. 7 |
| Préparation pour: | Travaux de diplôme |</p>
<table>
<thead>
<tr>
<th>Mineur:</th>
<th>3. Ingénierie des eaux, du sol et des écosystèmes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Titre:</th>
<th>RISQUES HYDROLOGIQUES ET AMÉNAGEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enseignants:</td>
<td>Prof. André Musy, SIE, Prof. Christophe Ancy, GC</td>
</tr>
<tr>
<td>Section(s)</td>
<td>Semestre</td>
</tr>
<tr>
<td>SIE</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJECTIFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Introduction aux concepts et principes inhérents aux aléas, aux dangers et au risque hydrologique</td>
</tr>
<tr>
<td>- Présentation des méthodes d'évaluation et de gestion du risque lié à l'eau, à la neige et aux transports solides</td>
</tr>
<tr>
<td>- Études de cas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Introduction to the concepts and principles related to hazards, dangers and hydrological risk</td>
</tr>
<tr>
<td>- Presentation of methods for evaluation and risk management connected to water, snow and solid transportation</td>
</tr>
<tr>
<td>- Case studies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTENU</th>
</tr>
</thead>
<tbody>
<tr>
<td>- L'aléa, le danger et le risque hydrologique</td>
</tr>
<tr>
<td>- La vulnérabilité, les objectifs et le déficit de protection:</td>
</tr>
<tr>
<td>- définition, concept de base et méthodes d'estimation</td>
</tr>
<tr>
<td>- La gestion du risque:</td>
</tr>
<tr>
<td>- stratégie et aménagements de type structural (ouvrages de protection) et non-structural</td>
</tr>
<tr>
<td>Chaptites choisis:</td>
</tr>
<tr>
<td>- les inondations (crues lentes)</td>
</tr>
<tr>
<td>- le transport de matériaux et de sédiments</td>
</tr>
<tr>
<td>- les laves torrentielles et les coulées de boues</td>
</tr>
<tr>
<td>- les avalanches</td>
</tr>
<tr>
<td>pour chaque chapitre: approche naturaliste et déterministe, qualification des phénomènes et méthode de calcul (approche par simulation et scénarios)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hazard, danger and hydrological risk</td>
</tr>
<tr>
<td>- Vulnerability, objectives and deficit of protection:</td>
</tr>
<tr>
<td>- definition, basic concept and estimation methods</td>
</tr>
<tr>
<td>- Risk Management:</td>
</tr>
<tr>
<td>- strategies and measures of structural (protection works) and non-structural types</td>
</tr>
<tr>
<td>Selected Chapters:</td>
</tr>
<tr>
<td>- floods / inundations (low floods)</td>
</tr>
<tr>
<td>- solid and sediment transport</td>
</tr>
<tr>
<td>- debris flows and mud flows</td>
</tr>
<tr>
<td>- avalanches</td>
</tr>
<tr>
<td>for each chapter: naturalist and deterministic approach, qualification of phenomenon and methods of calculation (approach by simulations and scenarios)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORME DE L'ENSEIGNEMENT:</th>
<th>Ex-Cathedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIBLIOGRAPHIE:</td>
<td>Notes de cours, cours virtuel sur le Web</td>
</tr>
<tr>
<td>LIAISON AVEC D'AUTRES COURS:</td>
<td>Changements climatiques, Gestion intégrée des eaux I et II</td>
</tr>
<tr>
<td>Préalable :</td>
<td>Hydrologie appliquée, Hydraulique</td>
</tr>
<tr>
<td>Préparation pour:</td>
<td>Ingénierie en environnement</td>
</tr>
<tr>
<td>NOMBRE DE CREDITS:</td>
<td>4</td>
</tr>
<tr>
<td>SESSION D'EXAMEN:</td>
<td>Printemps</td>
</tr>
<tr>
<td>Contrôle continu</td>
<td></td>
</tr>
<tr>
<td>FORME DU CONTROLE:</td>
<td>Examen écrit</td>
</tr>
</tbody>
</table>
4. Géomatique

Techniques de navigation

Enseignants: Prof. Bertrand Merminod, SIE, Jan Skaloud, chargé de cours SIE

<table>
<thead>
<tr>
<th>Section (s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>9</td>
<td></td>
<td>x</td>
<td></td>
<td>Par semaine: 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 0</td>
</tr>
</tbody>
</table>

Objectifs

Apprendre à modéliser le comportement des capteurs utilisés en navigation.
Développer des algorithmes d’estimation de paramètres applicables en temps réel.
Saisir l’importance d’intégrer le positionnement et la collecte d’autres types de données environnementales.

Objectifs

To learn the modelling of the behaviour of various sensors used in navigation.
To develop algorithms for the estimation of parameters in real-time.
To grasp the importance of acquiring position data together with other environmental data.

Contenu

Instruments de navigation
- survol historique
- appareils optiques
- techniques inertielles: gyroscopes et accéléromètres
- capteurs intégrés

Logiciels de navigation
- moindres carrés séquentiels (rappels)
- information a priori sur les paramètres
- prédiction, filtrage et lissage
- modélisation d’un mouvement
- propagation et modélisation du bruit
- filtres de Bayes et de Kalman
- observations corrigées
- organisation des calculs

Domaines d’application
- positionnement GPS
- vol photographique
- télématic routière
- contrôle du trafic aérien

Contents

Navigation instruments
- historical overview
- optical instruments
- inertial techniques: gyroscopes and accelerometers
- integrated sensors

Navigation software
- sequential least squares (refresher)
- a priori information about parameters
- prediction, filtering and smoothing
- movement modelling
- noise propagation and modelling
- Bayes and Kalman filters
- correlated observations
- organization of the computations

Application domains
- GPS positioning
- photo flight
- road telematics
- air traffic control

Forme de l’enseignement: Cours ex cathedra, exercices (partiellement en salle informatique), démonstrations, visites

Bibliographie: Polycopiés, livres, exercices corrigés, mode d’emploi de logiciels

Liaison avec d’autres cours: Navigation dans les transports

Préalable: Méthodes d’estimation, Localisation par satellites

Préparation pour: une carrière passionnante!

Nombre de crédits: 4

Session d’examen: Printemps
Contrôle continu

Forme du contrôle: Examen oral
<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>9</td>
<td>x</td>
<td></td>
<td></td>
<td>Par semaine: 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique: 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Voir page Web :

http://ssie.epfl.ch/plan_etude/sem7-9_04-05.php

CONTENU

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

Préalable :

Préparation pour:

NOMBRE DE CREDITS: 4

SESSION D'EXAMEN: Printemps

Contrôle continu

FORME DU CONTROLE:
Mineur: 4. Géomatique

Titre: WEB MAPPING

Enseignant: Vacat

<table>
<thead>
<tr>
<th>Section(s)</th>
<th>Semestre</th>
<th>Oblig.</th>
<th>Option</th>
<th>Facult.</th>
<th>Heures totales: 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIE</td>
<td>9</td>
<td>x</td>
<td></td>
<td></td>
<td>Par semaine: 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cours 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exercices 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pratique 0</td>
</tr>
</tbody>
</table>

OBJECTIFS

Voir page Web :

http://ssie.epfl.ch/plan_etude/sem7-9_04-05.php

CONTENU

FORME DE L'ENSEIGNEMENT:

BIBLIOGRAPHIE:

LIAISON AVEC D'AUTRES COURS:

Préalable :

Préparation pour:

NOMBRE DE CREDITS: 4

SESSION D'EXAMEN: Printemps

Contrôle continu

FORME DU CONTROLE: